scholarly journals Evaluation of Greenhouse Gas Emissions from Reservoirs: A Review

2021 ◽  
Vol 13 (21) ◽  
pp. 11621
Author(s):  
Ion V. Ion ◽  
Antoaneta Ene

In order to evaluate the greenhouse gas (GHG) emissions from a reservoir or from several reservoirs in a country or a climatic zone, simpler or more complex models based on measurements and analyses of emissions presented in the literature were developed, which take into account one or more reservoir-specific parameters. The application of the models in the assessment of GHG emissions from a multipurpose reservoir gave values that are more or less close to the average values reported in the literature for the temperate zone reservoirs. This is explained by the fact that some models only consider emissions caused by impoundment and not degassing, spillway emissions, and downstream emissions, or those that use different calculation periods. The only model that calculates GHG emissions over the life cycle that occur pre-impoundment, post-impoundment, from unrelated anthropogenic sources and due to the reservoir construction is the model used by the G-res tool. In addition, this tool is best suited for multipurpose reservoirs because it allocates GHG emissions for each use, thus facilitating the correct reporting of emissions. The G-res tool used to calculate GHG emissions from the Stânca-Costești Multipurpose Reservoir shows that this is a sink of GHG with a net emission of −5 g CO2eq/m2/yr (without taking into account the emissions due to dam construction).

2018 ◽  
Author(s):  
Angel D. Ramirez ◽  
Danilo Arcentales ◽  
Andrea Boero

Climate change is a serious threat to sustainability. Anthropogenic climate change is due to the accumulation of greenhouse gases (GHG) in the atmosphere beyond natural levels. Anthropogenic GHG emissions are mostly associated with carbon-dioxide (CO2) originated in the combustion of fossil fuels used for heat, power, and transportation. Globally, transportation contributes to 14% of the global GHG emissions. The transport sector is one of the main contributors to the greenhouse gas emissions of Ecuador. In Guayaquil, the road mass transportation system comprises regular buses and the bus rapid transit (BRT) system. Electricity in Ecuador is mostly derived from hydropower, hence incurs relatively low GHG emissions along its life cycle. Therefore, electrification of transport has been seen as an opportunity for mitigation of GHG emissions. In this study, the effect of partial replacement of the bus rapid system fleet is investigated. Feeders have been chosen as the replacement target in five different scenarios. GHG emissions from diesel-based feeders have been calculated using the GREET Fleet Footprint Calculator tool. The GHG emissions associated with the electricity used for transportation is calculated using the life cycle inventory of the electricity generation system of Ecuador. Three energy mix scenarios are used for this purpose. The 2012 mix which had 61% hydropower; the mix of 85% hydropower and the marginal electricity scenario, which supposed the extreme case when the new demand for electricity occurs during peak demand periods. Results indicate that mitigation of GHG emissions is possible for almost all scenarios of percentage fleet replacement and all mix scenarios. Electric buses efficiency and the carbon intensity of the electricity mix are critical for GHG mitigation.


2021 ◽  
Vol 13 (7) ◽  
pp. 3637
Author(s):  
Kristina J. Kaske ◽  
Silvestre García de Jalón ◽  
Adrian G. Williams ◽  
Anil R. Graves

This study assesses the greenhouse gas (GHG) emissions and sequestration of a silvoarable system with poplar trees and a crop rotation of wheat, barley, and oilseed rape and compares this with a rotation of the same arable crops and a poplar plantation. The Farm-SAFE model, a financial model of arable, forestry, and silvoarable systems, was modified to account for life-cycle greenhouse gas emissions. Greenhouse gas emissions from tree and crop management were determined from life-cycle inventories and carbon storage benefits from the Yield-SAFE model, which predicts crop and tree yields in arable, forestry, and silvoarable systems. An experimental site in Silsoe in southern England served as a case study. The results showed that the arable system was the most financially profitable system, followed by the silvoarable and then the forestry systems, with equivalent annual values of EUR 560, 450 and 140 ha−1, respectively. When the positive and negative externalities of GHG sequestration and emissions were converted into carbon equivalents and given an economic value, the profitability of the arable systems was altered relative to the forestry and silvoarable systems, although in the analysis, the exact impact depended on the value given to GHG emissions. Market values for carbon resulted in the arable system remaining the most profitable system, albeit at a reduced level. Time series values for carbon proposed by the UK government resulted in forestry being the most profitable system. Hence, the relative benefit of the three systems was highly sensitive to the value that carbon was given in the analysis. This in turn is dependent on the perspective that is given to the analysis.


Author(s):  
S.F. Ledgard ◽  
C. Basset-Mens ◽  
S. Mclaren ◽  
M. Boyes

Assessment of energy use and greenhouse gas emissions associated with dairy products needs to account for the whole life cycle of the products, particularly with the debate about "food miles"(the transportation of product from producer to consumer). A life cycle assessment (LCA) of an average NZ dairy farm for 2005 showed that total energy use per kg milk from the "cradle-tomilk- in-the-vat" was 45-65% of that from EU farms. The greenhouse gas (GHG) emissions or carbon footprint showed similar relative trends although differences were smaller due, at least in part, to lower methane efficiency from lower-producing NZ cows. Energy use associated with shipping dairy product (e.g. cheese) from NZ to UK is equivalent to about one-quarter of the on-farm use. Even when added together, the energy use from the NZ farm and from shipping would still be less than onfarm energy use for the EU farms. However, this is affected by intensification and the Dexcel Resource Efficient Dairying trial showed that increasing maize silage use, and nitrogen fertiliser use in particular, increased the energy use and GHG emissions per kg milk by up to 190% and 23%, respectively. Thus, the trend for intensification on NZ dairy farms means that our comparative advantage with EU farms is diminishing. A focus on improved farm system practices and integration of mitigation options is required to reverse this trend. Keywords: food miles, greenhouse gases, energy, life cycle assessment, milk, New Zealand, efficiency


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3744
Author(s):  
Delfina Rogowska ◽  
Artur Wyrwa

The assessment of life cycle greenhouse gas emissions of motor fuels is important due to the legal obligations and corporate social responsibility of the petroleum industry. Combining the Life-Cycle Assessment with optimization methods can provide valuable support in the decision-making process. In this paper, a mathematical model of a refinery was developed to analyze the impact of process optimization on GHG emissions at the fuel production stage. The model included ten major refinery units. Fuel production costs were minimized by taking into account the number of constraints. The analysis was performed in two steps. First, the model was run for the reference case of fuels composition. Then, more than twelve thousand model runs were performed. In each model, the fuel composition was changed. This change represented the exogenous pressures and resulted in different flows of mass, energy and GHG emission at the refinery. The most favorable results in terms of GHG emissions were then identified and analyzed. Additionally, the impact of using low-carbon fuels for process heating was evaluated. The study showed that fuel blending management could lead to the reduction of GHG emissions by 0.4 gCO2-eq/MJ while the use of low-carbon fuel for process heating results in a reduction of GHG emissions by 2 ca. gCO2-eq/MJ.


Robotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
Florian Stuhlenmiller ◽  
Steffi Weyand ◽  
Jens Jungblut ◽  
Liselotte Schebek ◽  
Debora Clever ◽  
...  

Modern industry benefits from the automation capabilities and flexibility of robots. Consequently, the performance depends on the individual task, robot and trajectory, while application periods of several years lead to a significant impact of the use phase on the resource efficiency. In this work, simulation models predicting a robot’s energy consumption are extended by an estimation of the reliability, enabling the consideration of maintenance to enhance the assessment of the application’s life cycle costs. Furthermore, a life cycle assessment yields the greenhouse gas emissions for the individual application. Potential benefits of the combination of motion simulation and cost analysis are highlighted by the application to an exemplary system. For the selected application, the consumed energy has a distinct impact on greenhouse gas emissions, while acquisition costs govern life cycle costs. Low cycle times result in reduced costs per workpiece, however, for short cycle times and higher payloads, the probability of required spare parts distinctly increases for two critical robotic joints. Hence, the analysis of energy consumption and reliability, in combination with maintenance, life cycle costing and life cycle assessment, can provide additional information to improve the resource efficiency.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Hao ◽  
Yu Ruihong ◽  
Zhang Zhuangzhuang ◽  
Qi Zhen ◽  
Lu Xixi ◽  
...  

AbstractGreenhouse gas (GHG) emissions from rivers and lakes have been shown to significantly contribute to global carbon and nitrogen cycling. In spatiotemporal-variable and human-impacted rivers in the grassland region, simultaneous carbon dioxide, methane and nitrous oxide emissions and their relationships under the different land use types are poorly documented. This research estimated greenhouse gas (CO2, CH4, N2O) emissions in the Xilin River of Inner Mongolia of China using direct measurements from 18 field campaigns under seven land use type (such as swamp, sand land, grassland, pond, reservoir, lake, waste water) conducted in 2018. The results showed that CO2 emissions were higher in June and August, mainly affected by pH and DO. Emissions of CH4 and N2O were higher in October, which were influenced by TN and TP. According to global warming potential, CO2 emissions accounted for 63.35% of the three GHG emissions, and CH4 and N2O emissions accounted for 35.98% and 0.66% in the Xilin river, respectively. Under the influence of different degrees of human-impact, the amount of CO2 emissions in the sand land type was very high, however, CH4 emissions and N2O emissions were very high in the artificial pond and the wastewater, respectively. For natural river, the greenhouse gas emissions from the reservoir and sand land were both low. The Xilin river was observed to be a source of carbon dioxide and methane, and the lake was a sink for nitrous oxide.


Sign in / Sign up

Export Citation Format

Share Document