scholarly journals Applicability of Membranes in Protective Face Masks and Comparison of Reusable and Disposable Face Masks with Life Cycle Assessment

2021 ◽  
Vol 13 (22) ◽  
pp. 12574
Author(s):  
Huyen Trang Do Thi ◽  
Peter Mizsey ◽  
Andras Jozsef Toth

In the COVID-19 pandemic period, the role of face masks is critical as a protective physical barrier to prevent droplets and filtrate exhalations coming from infected subjects or against various environmental threats, including the SARS-Cov-2 virus. However, the plastic and microplastic waste from the used face masks pollute the environment, cause a negative impact on human health and the natural ecosystem, as well as increase landfill and medical waste. The presented paper focuses on providing an overview of the application of membrane technology in face mask products as well as the development of protection mechanisms in the future. The authors performed an environmental analysis of reusable (cloth) masks and disposable masks (surgical masks and filtering facepiece respirators) using the Life Cycle Assessment methodology to assess the impacts on the environment, human health, and ecosystem. IMPACT 2002+ V2.14, ReCiPe 2016 Endpoint (H) V1.02, IPCC 2013 GWP 100a V1.03 methods were applied using specialized software (SimaPro V9.1). The disposable masks consistently provide higher protection, though they also carry several multiple environmental burdens. Conversely, reusable masks improve environmental performance, reduce 85% of waste, have a 3.39 times lower impact on climate change, and are 3.7 times cheaper than disposable masks.

Author(s):  
V. Russo ◽  
A. E. Strever ◽  
H. J. Ponstein

Abstract Purpose Following the urgency to curb environmental impacts across all sectors globally, this is the first life cycle assessment of different wine grape farming practices suitable for commercial conventional production in South Africa, aiming at better understanding the potentials to reduce adverse effects on the environment and on human health. Methods An attributional life cycle assessment was conducted on eight different scenarios that reduce the inputs of herbicides and insecticides compared against a business as usual (BAU) scenario. We assess several impact categories based on ReCiPe, namely global warming potential, terrestrial acidification, freshwater eutrophication, terrestrial toxicity, freshwater toxicity, marine toxicity, human carcinogenic toxicity and human non-carcinogenic toxicity, human health and ecosystems. A water footprint assessment based on the AWARE method accounts for potential impacts within the watershed. Results and discussion Results show that in our impact assessment, more sustainable farming practices do not always outperform the BAU scenario, which relies on synthetic fertiliser and agrochemicals. As a main trend, most of the impact categories were dominated by energy requirements of wine grape production in an irrigated vineyard, namely the usage of electricity for irrigation pumps and diesel for agricultural machinery. The most favourable scenario across the impact categories provided a low diesel usage, strongly reduced herbicides and the absence of insecticides as it applied cover crops and an integrated pest management. Pesticides and heavy metals contained in agrochemicals are the main contributors to emissions to soil that affected the toxicity categories and impose a risk on human health, which is particularly relevant for the manual labour-intensive South African wine sector. However, we suggest that impacts of agrochemicals on human health and the environment are undervalued in the assessment. The 70% reduction of toxic agrochemicals such as Glyphosate and Paraquat and the 100% reduction of Chlorpyriphos in vineyards hardly affected the model results for human and ecotoxicity. Our concerns are magnified by the fact that manual labour plays a substantial role in South African vineyards, increasing the exposure of humans to these toxic chemicals at their workplace. Conclusions A more sustainable wine grape production is possible when shifting to integrated grape production practices that reduce the inputs of agrochemicals. Further, improved water and related electricity management through drip irrigation, deficit irrigation and photovoltaic-powered irrigation is recommendable, relieving stress on local water bodies, enhancing drought-preparedness planning and curbing CO2 emissions embodied in products.


2015 ◽  
Vol 26 (3) ◽  
pp. 389-406 ◽  
Author(s):  
Maria Francesca Milazzo ◽  
Francesco Spina

Purpose – The purpose of this paper is to quantify the human health impacts of soy-biodiesel production with the aim to discuss about its environmental sustainability. Design/methodology/approach – The integrated use of two current approaches, risk assessment (RA) and life cycle assessment (LCA), has allowed improvement of the potentialities of both in obtaining a more complete analysis. The implementation of a life cycle indicator for the assessment of the impacts on the human health, integrating the features of both approaches, is the main focus of this paper. Findings – It has been found that, although the biodiesel is a green fuel, it has some criticalities in its life cycle, which cannot be disregarded. In fact, even if biodiesel is essentially a clean fuel there are some phases, prior to the industrial phase, that can cause negative effects on human health and ecosystems. Practical implications – Results suggest some measures which can be adopted to substantially reduce human health impacts. Further alternative could be analysed in future to gain more insight about the use of biodiesel fuels. Originality/value – The estimation of the impacts of a process producing biodiesel has been made by using a novel approach. The novelty is associated with the calculation of the impacts on human health by using the transfer factors applied in RA. The use of such factors, properly modified in order to estimate the impacts on a wider scale than a site-dimension, allows defining a holistic approach, as LCA and RA are used as complete units but at the same time can be related to each other.


2018 ◽  
Vol 913 ◽  
pp. 1018-1026
Author(s):  
Yan Qiong Sun ◽  
Yu Liu ◽  
Su Ping Cui

In this paper, a variety of blocks were grouped into the autoclaved blocks and fired blocks as far as the productive technology is concerned. In order to compare the life cycle impacts of the two kinds of the blocks, a life cycle assessment of two products on the functional unit 1m3 was carried out through the exploitation of mineral stage, transportation stage and the production of the blocks stage on the considering of the resource and energy consumption and the pollutant discharges. The results demonstrated that the fired blocks appeared to have less impact than autoclaved concrete blocks on human health, marine ecotoxicity toxicity and terrestrial ecotoxicity toxicity nearly 30%. The raw coal led to the serious impacts on the fossil depletion through the cement production stage of the autoclaved concrete blocks accounting for 45.86% and the gangue exploitation stage of the fired blocks accounting for 42.5%. Assessment of the data quality that the data was of pretty high or within the permission. The sensitivity analysis and contribution analysis assessment showed that the conclusion were robust.


Author(s):  
Sila Temizel-Sekeryan ◽  
Andrea L. Hicks

Global production and consumption of silver nanoparticles (nAg) are forecasted to increase due to their applications in modern technologies. This situation raises concerns related to their environmental and human health...


Sign in / Sign up

Export Citation Format

Share Document