scholarly journals Compressive Strength of Sustainable Geopolymer Concrete Composites: A State-of-the-Art Review

2021 ◽  
Vol 13 (24) ◽  
pp. 13502
Author(s):  
Hemn Unis Ahmed ◽  
Azad A. Mohammed ◽  
Serwan Rafiq ◽  
Ahmed S. Mohammed ◽  
Amir Mosavi ◽  
...  

The building industry, which emits a significant quantity of greenhouse gases, is under tremendous pressure due to global climate change and its consequences for communities. Given the environmental issues associated with cement production, geopolymer concrete has emerged as a sustainable construction material. Geopolymer concrete is an eco-friendly construction material that uses industrial or agricultural by-product ashes as the principal binder instead of Portland cement. Fly ash, ground granulated blast furnace slag, rice husk ash, metakaolin, and palm oil fuel ash were all employed as binders in geopolymer concrete, with fly ash being the most frequent. The most important engineering property for all types of concrete composites, including geopolymer concrete, is the compressive strength. It is influenced by different parameters such as the chemical composition of the binder materials, alkaline liquid to binder ratio, extra water content, superplasticizers dosages, binder content, fine and coarse aggregate content, sodium hydroxide and sodium silicate content, the ratio of sodium silicate to sodium hydroxide, the concentration of sodium hydroxide (molarity), curing temperature, curing durations inside oven, and specimen ages. In order to demonstrate the effects of these varied parameters on the compressive strength of the fly ash-based geopolymer concrete, a comprehensive dataset of 800 samples was gathered and analyzed. According to the findings, the curing temperature, sodium silicate content, and alkaline solution to binder ratio are the most significant independent parameters influencing the compressive strength of the fly ash-based geopolymer concrete (FA-BGPC) composites.

2021 ◽  
Author(s):  
Hemn Unis Ahmed ◽  
Azad A. Mohammed ◽  
Ahmed S. Mohammed

Abstract The growing concern about global climate change and its adverse impacts on societies is putting severe pressure on the construction industry as one of the largest producers of greenhouse gases. Given the environmental issues associated with cement production, geopolymer concrete has emerged as a sustainable construction material. Geopolymer concrete is cementless concrete that uses industrial or agro by-product ashes as the main binder instead of ordinary Portland cement; this leads to being an eco-efficient and environmentally friendly construction material. Compressive strength is one of the most important mechanical property for all types of concrete composites including geopolymer concrete, and it is affected by several parameters like an alkaline solution to binder ratio (l/b), fly ash (FA) content, SiO2/Al2O3 (Si/Al) of the FA, fine aggregate (F) and coarse aggregate (C) content, sodium hydroxide (SH) and sodium silicate (SS) content, ratio of sodium silicate to sodium hydroxide (SS/SH), molarity (M), curing temperature (T), curing duration (CD) inside the oven and specimen ages (A). In this regard, a comprehensive systematic review was carried out to show the effect of these different parameters on the compressive strength of the fly ash-based geopolymer concrete (FA-GPC). In addition, multi-scale models such as Artificial Neural Network (ANN), M5P-tree (M5P), Linear Regression (LR), and Multi-logistic Regression (MLR) models were developed to predict the compressive strength of FA-GPC composites. For the first time, in the modeling process, twelve effective parameters including l/b, FA, Si/Al, F, C, SH, SS, SS/SH, M, T, CD, and A were considered the modeling input parameters. Then, the efficiency of the developed models was assessed by various statistical assessment tools like Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Scatter Index (SI), OBJ value, and the Coefficient of determination (R2). Results show that the curing temperature, sodium silicate content, and ratio of the alkaline solution to the binder content are the most significant independent parameters that influence on the compressive strength of the FA-GPC, and the ANN model has better performance for predicting the compressive strength of FA-GPC in compared to the other developed models.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253006
Author(s):  
Hemn Unis Ahmed ◽  
Ahmed Salih Mohammed ◽  
Azad A. Mohammed ◽  
Rabar H. Faraj

Geopolymer concrete is an inorganic concrete that uses industrial or agro by-product ashes as the main binder instead of ordinary Portland cement; this leads to the geopolymer concrete being an eco-efficient and environmentally friendly construction material. A variety of ashes used as the binder in geopolymer concrete such as fly ash, ground granulated blast furnace slag, rice husk ash, metakaolin ash, and Palm oil fuel ash, fly ash was commonly consumed to prepare geopolymer concrete composites. The most important mechanical property for all types of concrete composites, including geopolymer concrete, is the compressive strength. However, in the structural design and construction field, the compressive strength of the concrete at 28 days is essential. Therefore, achieving an authoritative model for predicting the compressive strength of geopolymer concrete is necessary regarding saving time, energy, and cost-effectiveness. It gives guidance regarding scheduling the construction process and removal of formworks. In this study, Linear (LR), Non-Linear (NLR), and Multi-logistic (MLR) regression models were used to develop the predictive models for estimating the compressive strength of fly ash-based geopolymer concrete (FA-GPC). In this regard, a comprehensive dataset consists of 510 samples were collected in several academic research studies and analyzed to develop the models. In the modeling process, for the first time, twelve effective variable parameters on the compressive strength of the FA-GPC, including SiO2/Al2O3 (Si/Al) of fly ash binder, alkaline liquid to binder ratio (l/b), fly ash (FA) content, fine aggregate (F) content, coarse aggregate (C) content, sodium hydroxide (SH)content, sodium silicate (SS) content, (SS/SH), molarity (M), curing temperature (T), curing duration inside ovens (CD) and specimen ages (A) were considered as the modeling input parameters. Various statistical assessments such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Scatter Index (SI), OBJ value, and the Coefficient of determination (R2) were used to evaluate the efficiency of the developed models. The results indicated that the NLR model performed better for predicting the compressive strength of FA-GPC mixtures compared to the other models. Moreover, the sensitivity analysis demonstrated that the curing temperature, alkaline liquid to binder ratio, and sodium silicate content are the most affecting parameter for estimating the compressive strength of the FA-GPC.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 983 ◽  
Author(s):  
Dong Dao ◽  
Hai-Bang Ly ◽  
Son Trinh ◽  
Tien-Thinh Le ◽  
Binh Pham

Geopolymer concrete (GPC) has been used as a partial replacement of Portland cement concrete (PCC) in various construction applications. In this paper, two artificial intelligence approaches, namely adaptive neuro fuzzy inference (ANFIS) and artificial neural network (ANN), were used to predict the compressive strength of GPC, where coarse and fine waste steel slag were used as aggregates. The prepared mixtures contained fly ash, sodium hydroxide in solid state, sodium silicate solution, coarse and fine steel slag aggregates as well as water, in which four variables (fly ash, sodium hydroxide, sodium silicate solution, and water) were used as input parameters for modeling. A total number of 210 samples were prepared with target-specified compressive strength at standard age of 28 days of 25, 35, and 45 MPa. Such values were obtained and used as targets for the two AI prediction tools. Evaluation of the model’s performance was achieved via criteria such as mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2). The results showed that both ANN and ANFIS models have strong potential for predicting the compressive strength of GPC but ANFIS (MAE = 1.655 MPa, RMSE = 2.265 MPa, and R2 = 0.879) is better than ANN (MAE = 1.989 MPa, RMSE = 2.423 MPa, and R2 = 0.851). Sensitivity analysis was then carried out, and it was found that reducing one input parameter could only make a small change to the prediction performance.


2014 ◽  
Vol 699 ◽  
pp. 15-19 ◽  
Author(s):  
Rosniza Hanim Abdul Rahim ◽  
Khairun Azizi Azizli ◽  
Zakaria Man ◽  
Muhd Fadhil Nuruddin

Geopolymer is associated with the alkali activation of materials rich in Si and Al, and alkali activator such as sodium hydroxide is used for the dissolution of raw material with the addition of sodium silicate solution to increase the dissolution process. However, the trend of strength development of geopolymer using sodium hydroxide alone is not well established. This paper presents an evaluation on compressive strength of fly ash–based geopolymer by varying curing time with respect to different curing temperature using sodium hydroxide as the only activator. The samples were cured at room temperature and at an elevated temperature (60°C). Further analysis on the microstructure of geopolymer products cured at 60°C was carried out using Field Emission Scanning Microscopy (FESEM). It can be observed that the compressive strength increased as the curing time increased when cured at room temperature; whereas at elevated temperature, the strength increased up to a maximum 65.28 MPa at 14 days but gradually decreased at longer curing time. Better compressive strength can be obtained when the geopolymer was cured at an elevated temperature compared to curing at room temperature.


2011 ◽  
Vol 339 ◽  
pp. 452-457 ◽  
Author(s):  
Mohd Azreen Mohd Ariffin ◽  
Mohd Warid Hussin ◽  
Muhammad Aamer Rafique Bhutta

Geopolymer concrete is a type of amorphous alumino-silicate cementitious material. Geopolymer can be polymerized by polycondensation reaction of geopolymeric precursor and alkali polysilicates. Compared to conventional cement concrete, the production of geopolymer concrete has a relative higher strength, excellent volume stability and better durability. This paper presents the mix design and compressive strength of geopolymer concrete manufactured from the blend of palm oil fuel ash (POFA) and pulverized fuel ash (PFA) as full replacement of cement with a combination of sodium silicate and sodium hydroxide solution used as alkaline liquid. The density and strength of the geopolymer concrete with various PFA: POFA ratios of 0:100, 30:70, 50:50 and 70:30 together with sodium silicate to sodium hydroxide solution by mass at 2.5 and 1.0, are investigated. The concentrations of alkaline solution used are 14 Molar and 8 Molar. Tests were carried out on 100x100x100 mm cube geopolymer concrete specimens. Specimens were cured at room temperature and heat curing at 60°C and 90°C for 24 hours, respectively. The effects of mass ratios of PFA: POFA, the alkaline solution to PFA: POFA, ratio and concentration of alkaline solution on fresh and hardened properties of concrete are examined. The results revealed that as PFA: POFA mass ratio increased the workability and compressive strength of geopolymer concrete are increased, the ratio and concentration of alkaline solution increased, the compressive strength of geopolymer concrete increases with regards to curing condition.


2022 ◽  
Vol 955 (1) ◽  
pp. 012010
Author(s):  
A Kustirini ◽  
Antonius ◽  
P Setiyawan

Abstract Geopolymer concrete is concrete that uses environmentally friendly materials, using fly ash from waste materials from the coal industry as a substitute for cement. To produce geopolymer concrete, an alkaline activator is required, with a mixture of Sodium Hydroxide and Sodium Silicate. This research is an experimental study to determine the effect of variations in the concentration of sodium hydroxide (NaOH) 8 Mol, 10 Mol, 12 Mol, and 14 Mol on the compressive strength of geopolymer concrete. Mortar Geopolymer uses a mixture of 1: 3 for the ratio of fly ash and sand, 2.5: 0.45 for the ratio of sodium silicate and sodium hydroxide as an alkaline solution. The specimens used a cube mold having dimension 5 cm x 5 cm x 5 cm, then tested at 7 days and 28 days. The test resulted that concentration of NaOH 12 Mol obtained the maximum compressive strength of geopolymer concrete, that is 38.54 MPa. At concentrations of 12 Mol NaOH and exceeding 12M, the compressive strength of geopolymer concrete decreased.


2018 ◽  
Vol 7 (2.31) ◽  
pp. 196
Author(s):  
Sourav Kumar Das

With the growth of civilization the demand of cement concrete is increasing rapidly which increase the production of cement and abolishing the natural source of limestone. Also contributing a lot to the global warming by generating huge amount of carbon-di-oxide. Therefore the present study concentrate on the production of concrete using the geopolymerization technology which replaces cement fully by fly ash, a waste material and alkali solution. India is presently producing approximately 190 million tons of fly ash every year from moreover 145 power plants. Present research is focused on the different parameters which are curing temperature, ratio of sodium silicate to sodium hydroxide, molarity of sodium hydroxide, curing type and the results have been studied and discussed. Previous works emphasis that only the use of fly ash as the base material confine the concrete to be heat cured which limits the applicability of geopolymer concrete to cast-in-situ conditions. So some proportion of flyash is replaced by ground granulated blast furnace slag (GGBFS) and the effect on compressive and tensile strength is observed. Ambient temperature dry curing was done without any water when some proportion of fly ash was replaced by GGBFS. The ratio of sodium silicate solution to sodium hydroxide solution by mass was kept fixed at 2.5 and the concentration of sodium hydroxide was kept 14M. The ratio of flyash to alkali solution was kept 0.35 & 0.40. Replacing 40% of Flyash by GGBFS and keeping the concentration of NaOH as 14M at ambient temperature, the compressive strength encountered was 40 MPa. 


2020 ◽  
Vol 13 (1) ◽  
pp. 117-122
Author(s):  
Addepalli Mallinadh Kashyap ◽  
Tanimki Chandra Sekhar Rao ◽  
N.V. Ramana Rao

Carbon dioxide is liberated in huge amounts by the manufacturing of Portland Pozzolana Cement. Normally, conventional concrete is manufactured with Portland cement, which acts as a binder. The production of cement emits CO2 into the atmosphere, which is a green house gas and causes the environmental pollution. Considering this as a serious environmental problem, there is a need to develop sustainable alternatives to Portland cement utilizing the industrial byproducts such as fly ash, ground granulated blast furnace slag and Metakaoline which are pozzolonic in nature. It has been established that fly ash can replace cement partially. In this context, a new material was developed known as ‖Geopolymer‖. In this study, the various parameters on the short term engineering properties of fresh and hardened properties of Geopolymer Mortar were studied. In the present investigation, cement is replaced by geopolymer source material and water is replaced by alkaline activator consisting of Sodium Silicate and Sodium Hydroxide of molarity (12M). The ratio of sodium silicate to sodium hydroxide adopted was 2.5. The test results showed that final setting time decreases as the GGBS content in the mix increases and also increase in compressive strength. Where as in the case of metakaoline, as the content increases, there is a decrease in compressive strength and setting times of the geopolymer concrete.


Sign in / Sign up

Export Citation Format

Share Document