scholarly journals Environmental and Economic Optimisation of Buildings in Portugal and Hungary

2021 ◽  
Vol 13 (24) ◽  
pp. 13531
Author(s):  
Benedek Kiss ◽  
Jose Dinis Silvestre ◽  
Rita Andrade Santos ◽  
Zsuzsa Szalay

Life cycle assessment (LCA) is a scientific method for evaluating the environmental impact of products. Standards provide a general framework for conducting an LCA study and calculation rules specifically for buildings. The challenge is to design energy-efficient buildings that have a low environmental impact, reasonable costs, and high thermal comfort as these are usually conflicting aspects. Efficient mathematical optimisation algorithms can be applied to such engineering problems. In this paper, a framework for automated optimisation is described, and it is applied to a multi-story residential building case study in two locations, Portugal and Hungary. The objectives are to minimise the life cycle environmental impacts and costs. The results indicate that optimum solutions are found at a higher cost but lower global warming potential for Portugal than for Hungary. Optimum solutions have walls with a thermal transmittance in the intervals of 0.29–0.39 and 0.06–0.19 W/m2K for Portugal and Hungary, respectively. Multi-objective optimisation algorithms can be successfully applied to find solutions with low environmental impact and an eco-efficient thermal envelope.


Author(s):  
Xun Li ◽  
Pablo Ortiz ◽  
Brandon Kuczenski ◽  
Diana Franklin ◽  
Frederic T. Chong

The rapid growth of information technology has not only brought substantial economic and societal benefit but also led to an unsustainable disposable model in which mobile devices are replaced in a matter of months. The environmental impact of this stream of handsets in terms of manufacturing energy, materials, and disposal costs is alarming. This chapter aims at raising today’s environmental issues of the increasing smartphone market, as well as providing a quantitative analysis on the environmental impact of different life-cycle stages of the smartphones, including the manufacturing stage, using stage, and recycling. To achieve sustainable computing and best utilize the energy consumed during manufacturing the large number of devices, this chapter demonstrates the methodology and techniques towards reusing smartphones by presenting a case study on reusing smartphones for elementary school education.



2018 ◽  
Vol 10 (6) ◽  
pp. 1810 ◽  
Author(s):  
Weiguo Fan ◽  
Peng Zhang ◽  
Zihan Xu ◽  
Hejie Wei ◽  
Nachuan Lu ◽  
...  


2019 ◽  
Vol 7 (10) ◽  
pp. 359 ◽  
Author(s):  
Hwang ◽  
Jeong ◽  
Jung ◽  
Kim ◽  
Zhou

This research was focused on a comparative analysis of using LNG as a marine fuel with a conventional marine gas oil (MGO) from an environmental point of view. A case study was performed using a 50K bulk carrier engaged in domestic services in South Korea. Considering the energy exporting market for South Korea, the fuel supply chain was designed with the two largest suppliers: Middle East (LNG-Qatar/MGO-Saudi Arabia) and U.S. The life cycle of each fuel type was categorized into three stages: Well-to-Tank (WtT), Tank-to-Wake (TtW), and Well-to-Wake (WtW). With the process modelling, the environmental impact of each stage was analyzed based on the five environmental impact categorizes: Global Warming Potential (GWP), Acidification Potential (AP), Photochemical Potential (POCP), Eutrophication Potential (EP) and Particulate Matter (PM). Analysis results reveal that emission levels for the LNG cases are significantly lower than the MGO cases in all potential impact categories. Particularly, Case 1 (LNG import to Korea from Qatar) is identified as the best option as producing the lowest emission levels per 1.0 × 107 MJ of fuel consumption: 977 tonnages of CO2 equivalent (for GWP), 1.76 tonnages of SO2 equivalent (for AP), 1.18 tonnages of N equivalent (for EP), 4.28 tonnages of NMVOC equivalent (for POCP) and 26 kg of PM 2.5 equivalent (for PM). On the other hand, the results also point out that the selection of the fuel supply routes could be an important factor contributing to emission levels since longer distances for freight transportation result in more emissions. It is worth noting that the life cycle assessment can offer us better understanding of holistic emission levels contributed by marine fuels from the cradle to the grave, which are highly believed to remedy the shortcomings of current marine emission indicators.



2013 ◽  
Vol 7 (4) ◽  
pp. 429-438 ◽  
Author(s):  
Weiqian Zhang ◽  
Shen Tan ◽  
Yizhong Lei ◽  
Shoubing Wang




2015 ◽  
Vol 761 ◽  
pp. 651-655
Author(s):  
Hazwan Syafiq ◽  
Zahari Taha ◽  
Razali Muhamad

Life Cycle Assessment or LCA method is believed to be a good solution to improve sustainability in a manufacturing process. This method allows designers to identify opportunities to improve the environmental aspects of products at various points in their life cycle. In this paper, the implementation of LCA through the development of an Environmental Impact Assessment Tool (EIAT) is demonstrated via a case study of Volkswagen pulley crankshaft. EIAT is a tool that aids designers to improve the environmental impact in a manufacturing process by designing or producing products with minimal environmental impact and minimal use of resources, such as the material and energy. EIAT also offers the optimization of design solutions to reduce potential environmental impact of a specific product according to its design features. A pulley crankshaft was modelled in a CAD system where the form is fixed to maintain its function. Pulley crankshaft features, such as the type of material, diameter of pocket, stock thickness and diameter are the parameters that were optimized through the Genetic Algorithm encoded in EIAT. EIAT was validated with Eco-It (an established LCA tool) and with actual experiments. Results show a difference of less than 9% error between EIAT with the results produced by Eco-It and the actual experiments.



2021 ◽  
Vol 5 ◽  
Author(s):  
Juan Manuel Madrid-Solórzano ◽  
Jorge Luis García-Alcaraz ◽  
Emilio Jiménez Macías ◽  
Eduardo Martínez Cámara ◽  
Julio Blanco Fernández

Sotol is a Mexican distilled spirit produced in Northern Mexico. The estimated annual production of sotol is at around 5,200 hl per year. This industry grows at an average rate of 5% per year. The Mexican Sotol Council and the Sotol Certificate Council are regulatory bodies dedicated to monitoring that sotol producers comply with the Official Mexican Standard NOM-159-SCFI-2004. Currently, those regulatory bodies try to improve the sotol production process and good practice guidelines to contribute to cleaner production. This paper reports a case study of artisanal sotol production in Chihuahua State in Mexico. Life cycle assessment (LCA) technique was used to compute the environmental impact of sotol and its performance to identify system hotspots and propose improvement interventions. SimaPro software, v.9.1®, is used for the LCA, applying CML-IA baseline V3.05/EU25 method to evaluate and select environmental impact categories. The system boundary included the stages of harvest, cooking, milling, fermentation, distillation, bottling, and packaging. The findings indicate that each of the stages required for sotol beverage processing significantly affects the marine ecosystem. The milling and bottling stages have the highest environmental impact. A 750-ml bottle of artisan sotol causes 5.92 kg CO2 eq, based on empirical data. Sotol makers should focus on reducing energy consumption caused by input transportation and equipment for milling.



Sign in / Sign up

Export Citation Format

Share Document