scholarly journals Clarifying the Smokescreen of Russian Protected Areas

2021 ◽  
Vol 13 (24) ◽  
pp. 13774
Author(s):  
Roberto Cazzolla Gatti ◽  
Alena Velichevksaya ◽  
Luigi Simeone

Although in strictly protected areas no forest management and logging activities should be evident, a preliminary study detected that, even in the 200 areas with the highest protection of Russia, more than 2 Mha of trees have been lost between 2001 and 2018. Nonetheless, a relevant percentage of the actual drivers of tree loss in Russian strictly protected areas was surrounded by uncertainties due to several factors. Here, in an attempt to “clarify the smokescreen of Russian protected areas”, by validating previous remotely sensed data with new high-resolution satellite imagery and aerial images of land-use change, we shed more light on what has happened during the last 20 years. We used the same layer of tree loss from 2001 to 2020 but, instead of intersecting it with the MODIS data that could have been a source of underestimation of burned surfaces, we overlapped it to the layer of tree cover loss by dominant driver. We analysed the main drivers of tree loss in almost 200 strictly protected areas of Russia. We found that although fire is responsible for 75% of the loss in all strictly protected areas, forestry activities still account for 16%, and 9% is due to undefined causes. Therefore, uncontrolled wildfires (including those started before or after logging) and forestry activities are the main causes of 91% of the total tree loss. The combination of wildfires (often started intentionally) and forestry activities (illegally or barely legally put in place) caused a loss of an astonishing 3 million hectares. The fact that ≈10% of Russian tree cover was lost in two decades since 2001 only in strictly protected areas requires high attention by policymakers and important conservation actions to avoid losing other fundamental habitats and species during the next years when climate change and population growth can represent an additional trigger of an already dramatic situation. We call for an urgent response by national and local authorities that should start actively fighting wildfires, arsonists, and loggers even in inhabited remote areas and particularly in those included in strictly protected areas.

2022 ◽  
pp. 5-13
Author(s):  
Wayne M. Edwards

The impact of climate change on Malagasy amphibians remains poorly understood. Equally, deforestation, fragmentation, and lack of connectivity between forest patches may leave vulnerable species isolated in habitat that no longer suits their environmental or biological requirements. We assess the predicted impact of climate change by 2085 on the potential distribution of a Critically Endangered frog species, the golden mantella (Mantella aurantiaca), that is confined to a small area of the central rainforest of Madagascar. We identify potential population distributions and climatically stable areas. Results suggest a potential south-eastwardly shift away from the current range and a decrease in suitable habitat from 2110 km2 under current climate to between 112 km2 – 138 km2 by the year 2085 – less than 7 % of currently available suitable habitat. Results also indicate that the amount of golden mantella habitat falling within protected areas decreases by 86 % over the same period. We recommend research to ascertain future viability and the feasibility of expanding protection to newly identified potential sites. This information can then be used in future conservation actions such as habitat restoration, translocations, re introductions or the siting of further wildlife corridors or protected areas.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Guillaume Peterson St-Laurent ◽  
Lauren E. Oakes ◽  
Molly Cross ◽  
Shannon Hagerman

AbstractConservation practices during the first decade of the millennium predominantly focused on resisting changes and maintaining historical or current conditions, but ever-increasing impacts from climate change have highlighted the need for transformative action. However, little empirical evidence exists on what kinds of conservation actions aimed specifically at climate change adaptation are being implemented in practice, let alone how transformative these actions are. In response, we propose and trial a novel typology—the R–R–T scale, which improves on existing concepts of Resistance, Resilience, and Transformation—that enables the practical application of contested terms and the empirical assessment of whether and to what extent a shift toward transformative action is occurring. When applying the R–R–T scale to a case study of 104 adaptation projects funded since 2011, we find a trend towards transformation that varies across ecosystems. Our results reveal that perceptions about the acceptance of novel interventions in principle are beginning to be expressed in practice.


2013 ◽  
Vol 3 (12) ◽  
pp. 1055-1061 ◽  
Author(s):  
Alison Johnston ◽  
Malcolm Ausden ◽  
Andrew M. Dodd ◽  
Richard B. Bradbury ◽  
Dan E. Chamberlain ◽  
...  

2021 ◽  
Vol 13 (8) ◽  
pp. 1582
Author(s):  
Lara Talavera ◽  
Ana Vila-Concejo ◽  
Jody M. Webster ◽  
Courtney Smith ◽  
Stephanie Duce ◽  
...  

Rubble islands are dynamic sedimentary features present on reef platforms that evolve under a variety of morphodynamic processes and controlling mechanisms. They provide valuable inhabitable land for small island nations, critical habitat for numerous species, and are threatened by climate change. Aiming to investigate the controlling mechanisms dictating the evolution of One Tree Island (OTI), a rubble island in the Southern Great Barrier Reef, we combined different remotely-sensed data across varying timescales with wave data extracted from satellite altimetry and cyclone activity. Our findings show that (1) OTI had expanded by 7% between 1978 and 2019, (2) significant gross planform decadal adjustments were governed by the amount, intensity, proximity, and relative position of cyclones as well as El Niño Southern Oscillation (ENSO) phases, and (3) the mechanisms of island growth involve rubble spits delivering and redistributing rubble to the island through alongshore sediment transport and wave overtopping. Frequent short-term monitoring of the island and further research coupling variations in the different factors driving island change (i.e., sediment availability, reef-wave interactions, and extreme events) are needed to shed light on the future trajectory of OTI and other rubble islands under a climate change scenario.


Author(s):  
Wiguna Rahman ◽  
Joana Magos Brehm ◽  
Nigel Maxted ◽  
Jade Phillips ◽  
Aremi R. Contreras-Toledo ◽  
...  

AbstractConservation programmes are always limited by available resources. Careful planning is therefore required to increase the efficiency of conservation and gap analysis can be used for this purpose. This method was used to assess the representativeness of current ex situ and in situ conservation actions of 234 priority crop wild relatives (CWR) in Indonesia. This analysis also included species distribution modelling, the creation of an ecogeographical land characterization map, and a complementarity analysis to identify priorities area for in situ conservation and for further collecting of ex situ conservation programmes. The results show that both current ex situ and in situ conservation actions are insufficient. Sixty-six percent of priority CWRs have no recorded ex situ collections. Eighty CWRs with ex situ collections are still under-represented in the national genebanks and 65 CWRs have no presence records within the existing protected area network although 60 are predicted to exist in several protected areas according to their potential distribution models. The complementarity analysis shows that a minimum of 61 complementary grid areas (complementary based on grid cells) are required to conserve all priority taxa and 40 complementary protected areas (complementary based on existing protected areas) are required to conserve those with known populations within the existing in situ protected area network. The top ten of complementary protected areas are proposed as the initial areas for the development of CWR genetic reserves network in Indonesia. It is recommended to enhanced coordination between ex situ and in situ conservation stakeholders for sustaining the long term conservation of CWR in Indonesia. Implementation of the research recommendations will provide for the first time an effective conservation planning of Indonesia’s CWR diversity and will significantly enhance the country’s food and nutritional security.


Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 112
Author(s):  
Roberto Salzano ◽  
Christian Lanconelli ◽  
Giulio Esposito ◽  
Marco Giusto ◽  
Mauro Montagnoli ◽  
...  

Polar areas are the most sensitive targets of climate change. From this perspective, the continuous monitoring of the cryosphere represents a critical need, which, now, we can only partially supply with specific satellite missions. The integration between remote-sensed multi-spectral images and field data is crucial to validate retrieval algorithms and climatological models. The optical behavior of snow, at different wavelengths, provides significant information about the microphysical characteristics of the surface in addition to the spatial distribution of snow/ice covers. This work presents the unmanned apparatus installed at Ny Ålesund (Svalbard) that provides continuous spectral surface albedo. A narrow band device was compared to a full-range system, to remotely sensed data during the 2015 spring/summer period at the Amundsen-Nobile Climate Change Tower. The system was integrated with a camera aimed to acquire sky and ground images. The results confirmed the possibility of making continuous observations of the snow surface and highlighted the opportunity to monitor the spectral variations of snowed surfaces during the melting period.


2018 ◽  
Vol 8 (8) ◽  
pp. 751-751
Author(s):  
John F. Bruno ◽  
Amanda E. Bates ◽  
Chris Cacciapaglia ◽  
Elizabeth P. Pike ◽  
Steven C. Amstrup ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (9) ◽  
pp. e107792 ◽  
Author(s):  
Viviane G. Ferro ◽  
Priscila Lemes ◽  
Adriano S. Melo ◽  
Rafael Loyola

2021 ◽  
Author(s):  
Roberto Salzano ◽  
Christian Lanconelli ◽  
Giulio Esposito ◽  
Marco Giusto ◽  
Mauro Montagnoli ◽  
...  

<p><span>Polar areas are the most sensitive targets of </span><span>the </span><span>climate change and the continuous monitoring of the cryosphere represents a critical issue. The satellite remote sensing can fill this gap but further integration between remotely-sensed multi-spectral images and field data is crucial to validate retrieval algorithms and climatological models. The optical behaviour of snow, at different wavelengths, provides significant information about the micro-physical characteristics of the surface and this allow to discriminate different snow/ice covers. The aim of this work is to present an approach based on combining unmanned observations on spectral albedo and on the analysis of time-lapse images of sky and ground conditions in a</span><span>n </span><span>Ar</span><span>c</span><span>tic </span><span>test-site </span><span>(Svalbard, Norway). Terrestrial photography can provide, in fact, important information about the cloud cover and support the discrimination between white-sky or clear-sky illuminating conditions. Similarly, time-lapse cameras can provide a detailed description of the snow cover, estimating the fractional snow cover area. The spectral albedo was obtained by a narrow band device that was compared to a full-range commercial system and to remotely sensed data acquired during the 2015 spring/summer period at the </span><span>Amundsen - Nobile</span><span> Climate Change Tower (Ny </span><span>Å</span><span>lesund). The results confirmed the possibility to have continuous observations of the snow surface (microphisical) characteristics and highlighted the opportunity to monitor the spectral variations of snowed surfaces during the melting period. It was possible, </span><span>therefore,</span><span> to estimate spectral indexes, such as NDSI and SWIR albedo, and to found interesting links between both features and air/ground temperatures, wind-speed and precipitations. Different melting phases were detected and different processes were associated with the observed spectral variations.</span></p>


Sign in / Sign up

Export Citation Format

Share Document