scholarly journals Characteristics of Overburden Failure and Fracture Evolution in Shallow Buried Working Face with Large Mining Height

2021 ◽  
Vol 13 (24) ◽  
pp. 13775
Author(s):  
Xiuchang Shi ◽  
Jixing Zhang

In order to solve the issues of uncertain overburden failure height and water loss at the Daliuta coal mine, the collapse characteristics of overburden and the development height of water-conducting fractured zone were studied by using physical modeling, FLAC 3D numerical simulation, and field observation, which were used to verify each other. In order to quantitatively analyze the distribution characteristics of fracture rate of overlying rock mass in goaf, the overburden collapse image was binarized. The results showed that: (1) the failure characteristics of overburden in goaf obtained by the three research methods were roughly consistent, and the reliability of the results was high. The overburden failure height of No. 5−2 coal with large mining height was 137.32–153 m, which was 20.8–23.2 times the mining height. (2) The repeated mining of No. 5−2 coal intensified the further failure of the disturbed rock mass in the No. 2−2 coal goaf. (3) In the horizontal direction of the goaf, the fracture rate of rock mass was distributed in the shape of “saddle”. In the longitudinal direction of the goaf, the rock mass fracture rate decreased in a logarithmic function with the increase of the height from the mining coal seam. Overall, the conclusions are of engineering significance for accurately adopting water resources protection mining technology and reducing mine water inrush disasters.

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1579
Author(s):  
Jie Song ◽  
Diyang Chen ◽  
Jing Wang ◽  
Yufeng Bi ◽  
Shang Liu ◽  
...  

The water inrush of the Shangjiawan karst tunnel is used to study the evolution pattern of precursor water inrush information in water-filled caves and to further reveal the matching mode of the information. The three-dimensional numerical method FLAC3D was used to simulate the evolution process of water inrush after damage to a water-blocking rock mass structure in a water-filled cave and to obtain the evolution pattern of precursor water-inrush information caused by the damage. The results show that the multifield response to the characteristic precursor information of the water-inrush pattern after the fracture of the water-blocking rock mass follows the order of stress-field displacement-field seepage-field. Further, the matching pattern of the information shows that the stress field increased first and then decreased, the displacement field always increased, and the seepage field increased first and then decreased.


2021 ◽  
Vol 14 (3) ◽  
Author(s):  
Yong Yuan ◽  
Cheng Zhu ◽  
Hongmin Wei ◽  
Chaofeng Yuan ◽  
Zhongshun Chen

2011 ◽  
Vol 467-469 ◽  
pp. 1870-1875 ◽  
Author(s):  
Guang Ming Zhao ◽  
Xiang Rui Meng

By the impact of coal mining, coal floor will produce distortion and damage, and make the damage zone which may result in water inrush from the floor of coal seam. CT technology with DC electricity is used to analyze two-dimensional point source current field by employing the forward calculation, inverse iteration, model correction and other methods. On the basis, inverted resistivity image of the detecting zone is obtained, which can help to determine damage law and damage depth of coal seam floor. And then the possibility of water inrush from the coal floor is analyzed. Industry practice shows that the research results are credible and can play an important guiding role in the controlling of water inrush.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Feng Ju ◽  
Meng Xiao ◽  
Zequan He ◽  
Pai Ning ◽  
Peng Huang

Ultra-thick hard sandstone roofs present high thickness, poor delamination, and wide caving range. The strata pressure of the working face during actual mining increases, having a significant influence on the safe mining of the working face. Especially, in the mining areas of western China, the fully mechanized mining faces with high mining height and high-strength mining are more prominent. Understanding the fractures and stress evolution characteristics of the ultra-thick hard sandstone roof during actual mining is of high significance to control the dynamic pressure on the working face. In this paper, the typical ultra-thick hard sandstone roof of the Xiaojihan coal mine was taken as an example. The structural and chemical composition characteristics were analyzed. Besides, the fracture characteristics of ultra-thick hard roof during the working face mining were analyzed. Moreover, the fracture structure consistency was verified through physical simulation and a field measurement method. Finally, the stress evolution laws in the ultra-thick hard sandstone roof fracture were studied through numerical simulation. The findings demonstrated that (1) the ultra-thick hard sandstone roof was composed of inlaid coarse minerals, which had compact structure, while the Protodyakonov hardness reached up to 3.07; (2) under the high-strength mining condition of fully mechanized mining face with large mining height, the ultra-thick hard sandstone roof had the characteristics of brittle fracture, with a caving span of 12 m; (3) under the high-strength mining condition of fully mechanized mining face with large mining height, the ultra-thick hard sandstone roof followed the stress evolution laws that were more sensitive to the neighboring goaf. Therefore, it was necessary to reduce the fracture span or layering of ultra-thick hard sandstone roof through the manual intervention method adoption or increase either the strength of coal pillar or supporting body, to resist the impact generated during ultra-thick hard sandstone roof fracture.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yongjian Pan ◽  
Huajun Wang ◽  
Yanlin Zhao ◽  
Qiang Liu ◽  
Shilin Luo

Water inrush and mud outburst are one of the crucial engineering disasters commonly encountered during the construction of many railways and tunnels in karst areas. In this paper, based on fluid dynamics theory and discrete element method, we established a fractured rock mass mud inflow model using particle flow PFC3D numerical software, simulated the whole process of fractured rock mass mud inflow, and discussed the effect of particle size and flow velocity on the change of pressure gradient. The numerical simulation results show that the movement of particles at the corner of the wall when the water pressure is first applied occurs similar to the vortex phenomenon, with the running time increases, the flow direction of particles changes, the vortex phenomenon disappears, and the flow direction of particles at the corner points to the fracture; in the initial stage, the slope of the particle flows rate curves increases in time, and the quadratic function is used for fitting. After the percolation velocity of particles reaches stability, the slope of the curve remains constant, and the primary function is used for fitting; the particle flow rate and pressure gradient are influenced by a variety of factors, and they approximately satisfy the exponential function of an “S” curve.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Xue-bo Zhang ◽  
Ming Yang

Determining the optimal extrication location of the high extraction roadway can improve the gas extrication effect of highly gassy mine and solve the problem of gas concentration overrun at the upper corner, which is of great significance to safety and efficient mine production. According to the actual situation of mine, the gas gushing amount in the goaf, pressure difference at both ends of the working face, the 3D porosity, and permeability distribution of the caving zone and fissure zone were obtained by field measurement and numerical calculation. Through theoretical calculation, the proper extraction site of a high-position alley was determined. On this basis, the optimal extraction site of a high-position alley was determined by numerical analysis of the gas extraction effect at different sites. The results show that as the perpendicular distance between high-position alley and goaf floor increases, the gas extraction amount increases first and then decreases. The concentration of extraction gas gradually increases, and the increasing trend is gradually diminished. With the increase of the horizontal distance between the air return way and the high-position alley, the gas extraction amount and gas extraction concentration increase first and then decrease. The optimal extraction site of a high-position alley should be 39 m vertically away from the goaf floor and 30 m horizontally away from the air return way.


Sign in / Sign up

Export Citation Format

Share Document