scholarly journals On the Issues of Spatial Modeling of Non-Standard Profiles by the Example of Electromagnetic Emission Measurement Data

2022 ◽  
Vol 14 (1) ◽  
pp. 574
Author(s):  
Emiliia Iakovleva ◽  
Margarita Belova ◽  
Amilcar Soares ◽  
Anton Rassõlkin

This paper examines the possibility of the spatial modelling of the Earth’s natural pulsed-electromagnetic-field measured values, which form a closed profile without the data inside. This geophysical method allows us to map active tectonic movement which breaches the integrity of pipes. During the experiment, 4.5 km of profiles were measured in the Admiralteysky district of St. Petersburg, Russia. Regular electromotive force (EMF) values and anomalous EMF values were obtained, ranging from 0 to 900 µV and above 900 µV, respectively. The anomalous values are associated with tectonic faults in the bedrock. The data obtained are characterized by complex spatial anisotropy associated with the development of two groups of tectonic faults of different orientations. The authors have considered the problems of the spatial modeling of the data obtained. The main problems, the solutions to which should allow the obtaining of adequate models, have been identified. Based on the analysis of the measurement results, geological features of the studied areas, as well as variography, the following possible solutions were proposed: changing the measurement technique; dividing the data array according to the main directions of anisotropy; the need to introduce additional correction coefficients. The problem revealed in this article requires further research on the basis of the obtained results, which will reduce the cost and timing of such studies, and, as a result, give an opportunity to take into account active tectonic disturbances during the construction and scheduled maintenance of underground utilities, which is especially important within the framework of the concept of sustainable development.

2021 ◽  
Vol 310 ◽  
pp. 04003
Author(s):  
Liudmila Mitsevich ◽  
Natalia Zhukovskaya

The article discusses aerodrome geospatial modeling methods and geoinformation analysis for determining land use zones and obstacle restriction areas. Tall trees, buildings and structures, exceeding special limitation surfaces in the aerodrome flight areas, are obstacles that are dangerous. Using spatial modelling, which determines maximal permissible heights, it is proposed to predict the heights of natural and artificial vertical objects in order to analyse and plan land use capabilities. As a basis for spatial modeling, it is proposed to use stereoscopic models with a resolution of 0.3m, built on aircraft-based scanner images. Using the methods of geoinformation analysis, it is suggested to make horizontal zoning of aerodrome areas according to the most important air navigation safety and ecological indicators (power lines, roads, permitted classes of construction objects location). The study presents the research results of the proposed methodology for the Republic of Belarus aerodrome.


2019 ◽  
Vol 129 ◽  
pp. 01020
Author(s):  
Galina Kazunina ◽  
Allay Cherednichenko

The article investigates the evolution modes of cluster damage structure in brittle heterogeneous materials by using a three-dimensional probabilistic cellular automaton. By comparing the data of computer and physical experiments, there was established the essential role of the model parameter, which describes the intensity of the material destruction process under the influence of local overstress near the existing damage clusters - the probability of perimeter germination. The comparison of kinetic curves of damage accumulation and correlation functions showed that, depending on the probability value for damage cluster perimeter germination, two qualitatively different modes of evolution of damage accumulation process are observed. In this case, the best correspondence of correlation functions in model and physical experiment on pulsed electromagnetic emission is observed for perimeter germination probability values smaller than 0.2.


2013 ◽  
Vol 592-593 ◽  
pp. 529-532
Author(s):  
Robert Macků ◽  
Pavel Koktavý ◽  
Tomas Trčka ◽  
Vladimir Holcman

This paper deals with excess noise sources in dielectric materials. We focus especially on the concrete samples that are frequently tested to ensure information about the reliability and level of degradation. Nevertheless, the testing methods are limited mainly by the proper contact creation, signal detection and noise defined sensitivity. Our efforts are directed to the noise properties assessment. It turns out that the Johnson-Nyquist noise and the 1/f (flicker) noise are generated in the different regions with the different response to the internal or external electric field. In addition the noise analysis is affected by the internal polarization phenomena and the material residual humidity. This issue in connection with the sample geometrical properties and the dielectric noise measurement methodology take part in this paper.


1998 ◽  
Vol 16 (10) ◽  
pp. 1212-1225 ◽  
Author(s):  
N. F. Blagoveshchenskaya ◽  
V. A. Kornienko ◽  
A. V. Petlenko ◽  
A. Brekke ◽  
M. T. Rietveld

Abstract. We present an analysis of phenomena observed by HF distance-diagnostic tools located in St. Petersburg combined with multi-instrument observation at Tromsø in the HF modified ionosphere during a magnetospheric substorm. The observed phenomena that occurred during the Tromsø heating experiment in the nightside auroral Es region of the ionosphere depend on the phase of substorm. The heating excited small-scale field-aligned irregularities in the E region responsible for field-aligned scattering of diagnostic HF waves. The equipment used in the experiment was sensitive to electron density irregularities with wavelengths 12–15 m across the geomagnetic field lines. Analysis of the Doppler measurement data shows the appearance of quasiperiodic variations with a Doppler frequency shift, fd and periods about 100–120 s during the heating cycle coinciding in time with the first substorm activation and initiation of the upward field-aligned currents. A relationship between wave variations in fd and magnetic pulsations in the Y-component of the geomagnetic field at Tromsø was detected. The analysis of the magnetic field variations from the IMAGE magnetometer stations shows that ULF waves occurred, not only at Tromsø, but in the adjacent area bounded by geographical latitudes from 70.5° to 68° and longitudes from 16° to 27°. It is suggested that the ULF observed can result from superposition of the natural and heater-induced ULF waves. During the substorm expansion a strong stimulated electromagnetic emission (SEE) at the third harmonic of the downshifted maximum frequency was found. It is believed that SEE is accompanied by excitation of the VLF waves penetrating into magnetosphere and stimulating the precipitation of the energetic electrons (10–40 keV) of about 1-min duration. This is due to a cyclotron resonant interaction of natural precipitating electrons (1–10 keV) with heater-induced whistler waves in the magnetosphere. It is reasonable to suppose that a new substorm activation, exactly above Tromsø, was closely connected with the heater-induced precipitation of energetic electrons.Key words. Ionosphere (active experiments; ionosphere · magnetosphere interactions). Radio science (nonlinear phenomena).


2018 ◽  
Vol 61 (1) ◽  
pp. 103-115 ◽  
Author(s):  
Simon Vilms Pedersen ◽  
Ester Scotto di Perta ◽  
Sasha D. Hafner ◽  
Andreas S. Pacholski ◽  
Sven G. Sommer

Abstract. Ammonia emission reduces the reliability and nitrogen (N) fertilizer efficiency of animal manure and mineral fertilizers applied to fields. The loss of ammonia to the atmosphere is frequently compensated for by costly over-application of N fertilizers. New technologies to reduce ammonia emission are regularly developed, and their efficacy needs to be tested using accurate methods. To date, a major obstacle to many available emission measurement techniques is the requirement of large plot sizes of homogeneous surface characteristics, which particularly is a challenge to the number of plot-level replicates that can be carried out on a field providing uniform surface characteristics throughout. The objectives of this research were to test three different methods for measuring NH3 flux when applied to small plots (<315 m2) by comparison with conventional micrometeorological methods and to determine the labor intensity and expenses related to the respective methods in their entirety. The integrated horizontal flux (IHF) method and the ZINST method were used with passive flux Leuning samplers as micrometeorological reference methods. As examples of conventional small-plot emission measurement techniques, wind tunnels measuring gas-phase ammonia using ALPHA passive diffusion samplers and a flux chamber method using Dräger tubes for measurements of ammonia concentration (DTM) were used. As an inexpensive alternative small-plot method, we studied the feasibility of applying ALPHA passive diffusion samplers and battery-driven cup anemometers at ZINST height on small source areas (<315 m2), coupled with a backward Lagrangian stochastic (bLS) dispersion model to calculate emission fluxes (referred to as the AbLS method). When exposure duration was appropriate and weather conditions were not extreme, tests showed no significant difference in NH3 emission fluxes measured with AbLS, compared to those obtained with IHF and ZINST using Leuning samplers. However, the AbLS method did not give reliable emission measurements in periods with high wind speeds and heavy rain. It was also shown that the AbLS method provided valid results when reducing the plot radius from the standard 20 m to 10 m, or even 5 m, provided that the ALPHA samplers were exposed for at least 5 or 6 h. Emission from 200 kg urea-N ha-1 was between 20 and 30 kg N ha-1 in the two trials. The cost for one study running for one week using the ZINST or bLS methodology, including equipment for four plots and eight measurement intervals, was $2785 if horizontal fluxes were measured using the ALPHA samplers, compared to $12,301 using the Leuning samplers and $13,928 using gas washing bottles. Using the DTM flux chamber method once is a little more expensive than using the AbLS method, but less expensive if the cost of purchasing the equipment is distributed over five studies in five years. Using wind tunnels is as costly as measuring emissions with the Leuning samplers or gas washing bottles using the bLS or ZINST method. Keywords: ALPHA samplers, Ammonia emission, AbLS, bLS method, DTM method, IHF method, Labor cost, Passive ammonia samplers, Wind tunnels.


Author(s):  
R. Blaskow ◽  
E. Schwalbe

Abstract. For small-scale monitoring of small water bodies, conventional methods such as GNSS or total station measurements are used. The data acquisition is usually carried out in profile form supplemented with extra measurements of break edges, slope edges or bank courses. However, these methods can be used efficiently only on small sections and with low temporal resolution. At the same time, as the length of rivers or creeks to be monitored increases, the cost-effectiveness of the above methods decreases. Further limitations such as very small sections that are difficult to access and also sections that are sometimes heavily overgrown also prevent the use of large measuring platforms. By contrast, with use of a hand-held compact multi-sensor platform it is possible to survey several hundred kilometres of the smallest rivers and creeks. This publication demonstrates the use of such a platform to record micro-watersheds. For this purpose, the Creek4D project, the measurement principle and the sensor technology used are shown. In addition, first measurement data and the calibration strategy are shown.


Sign in / Sign up

Export Citation Format

Share Document