scholarly journals UV Light Driven Selective Oxidation of Cyclohexane in Gaseous Phase Using Mo-Functionalized Zeolites

Surfaces ◽  
2019 ◽  
Vol 2 (4) ◽  
pp. 546-559 ◽  
Author(s):  
Vincenzo Vaiano ◽  
Diana Sannino

Heterogeneous photocatalysis in the gas phase has been applied as a promising technique for organic syntheses in mild conditions. Modified zeolites have been used under UV irradiation as novel photocatalysts. In this study, we preliminarily investigated the photoxidation of cyclohexane on ferrierite and MoOx-functionalized ferrierite in a gas–solid continuous flow reactor. In the presence of UV light, MoOx-functionalized ferrierite showed the formation of benzene and cyclohexene as reaction products, indicating the occurrence of photocatalysed cyclohexane oxydehydrogenation. By contrast, unmodified ammonium ferrierite exhibited relevant activity for total oxidation of cyclohexane to carbon dioxide and water. The influence of Mo loading on cyclohexane conversion and products selectivity was evaluated.

2019 ◽  
Vol 18 (2) ◽  
pp. 314-318 ◽  
Author(s):  
Martin Dilla ◽  
Ahmet E. Becerikli ◽  
Alina Jakubowski ◽  
Robert Schlögl ◽  
Simon Ristig

Newly developed tubular reactor geometry allows intensive gas–solid interaction in photocatalytic gas-phase CO2 reduction.


2017 ◽  
Vol 4 (6) ◽  
pp. 1115-1121 ◽  
Author(s):  
Felix Rechberger ◽  
Markus Niederberger

A newly developed prototype of a flow reactor enables the exploitation of nanoparticle based aerogel monoliths as macroscopically sized photocatalysts in gas phase reactions.


2020 ◽  
Vol 82 (7) ◽  
pp. 1454-1466
Author(s):  
Abdelhadi Jouali ◽  
Anas Salhi ◽  
Abdelkahhar Aguedach ◽  
El Kbir Lhadi ◽  
Mohammed El Krati ◽  
...  

Abstract Tannins are recalcitrant polyphenolic molecules that resist microbial attack. Their main environmental damage is due to their low biodegradability. This work aims to investigate the photo-catalytic degradation of two commercial tannin extracts, chestnut (hydrolysable tannin) and mimosa (condensed tannin). The experiments were carried out under UV-light irradiation in a continuous-flow reactor using titanium dioxide (TiO2) immobilized on cellulosic fibers. It was highlighted that photo-catalytic degradation is unfavourable in acidic medium and when the pH is too high (pH above 12); it reaches its maximum efficiency at pH 7.5 (99 and 97% for chestnut and mimosa, respectively). Nearly complete degradation of tannins requires an irradiation period of 6 h. The process efficiency is inversely affected by the concentration of tannins essentially above 75 mg/L for chestnut and 60 mg/L for mimosa. Above 240 mL/min, any increase in feed flow negatively affects the performance of the process. Furthermore, a significant decrease of treatment efficiency was seen when increasing the concentration of ethanol and salts in the medium. Obtained results suggest that UV-light irradiation in a continuous-flow photo-reactor using immobilized TiO2 may be considered as an adequate process for the treatment of water containing recalcitrant tannin molecules.


2007 ◽  
Vol 2007 ◽  
pp. 1-6 ◽  
Author(s):  
Anna Kachina ◽  
Sergei Preis ◽  
German Charles Lluellas ◽  
Juha Kallas

Photocatalytic oxidation (PCO) of methylamine (MA) on titanium dioxide in aqueous and gaseous phases was studied. A simple batch glass reactor for aqueous PCO and an annular continuous flow reactor for the gas-phase PCO were used. Maximum aqueous PCO efficiency was achieved in alkaline media. Two mechanisms of aqueous PCO—decomposition to formate and ammonia, and oxidation of organic nitrogen directly to nitrite—lead ultimately toCO2, water, ammonia, and nitrate: formate and nitrite were observed as intermediates. A part of the ammonia formed in the reaction was oxidized to nitrite and nitrate. Volatile PCO products of MA included ammonia, nitrogen dioxide(NO2), nitrous oxide(N2O), carbon dioxide, and water. Thermal catalytic oxidation (TCO) resulted in the formation of ammonia, hydrogen cyanide, carbon monoxide, carbon dioxide, and water. The gas-phase PCO kinetics is described by the monomolecular Langmuir-Hinshelwood model. No deactivation ofTiO2catalyst was observed.


2018 ◽  
Vol 40 (17) ◽  
pp. 2276-2289 ◽  
Author(s):  
Eduardo Borges Lied ◽  
Camilo Freddy Mendoza Morejon ◽  
Rodrigo Leonardo de Oliveira Basso ◽  
Ana Paula Trevisan ◽  
Paulo Rodrigo Stival Bittencourt ◽  
...  

ChemCatChem ◽  
2020 ◽  
Vol 12 (21) ◽  
pp. 5420-5429
Author(s):  
Wenyu Diao ◽  
Hongyue Cai ◽  
Lu Wang ◽  
Xi Rao ◽  
Yongping Zhang

2018 ◽  
Vol 69 (6) ◽  
pp. 1363-1366 ◽  
Author(s):  
Stefania Daniela Bran ◽  
Petre Chipurici ◽  
Mariana Bran ◽  
Alexandru Vlaicu

This paper has aimed at evaluating the concentration of bioethanol obtained using sunflower stem as natural support, molasses as carbon source and Saccharomyces cerevisiae yeast in a continuous flow reactor. The natural support was tested to investigate the immobilization/growth of S. cerevisiae yeast. The concentration of bioethanol produced by fermentation was analyzed by gas chromatography using two methods: aqueous solutions and extraction in organic phase. The CO2 flow obtained during the fermentation process was considered to estimate when the yeast was deactivated. The laboratory experiments have highlighted that the use of plant-based wastes to bioconversion in ethanol could be a non-pollutant and sustainable alternative.


2020 ◽  
Vol 8 (35) ◽  
pp. 13195-13205 ◽  
Author(s):  
Swathi Mukundan ◽  
Daria Boffito ◽  
Abhijit Shrotri ◽  
Luqman Atanda ◽  
Jorge Beltramini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document