scholarly journals Face Liveness Detection Using Thermal Face-CNN with External Knowledge

Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 360 ◽  
Author(s):  
Jongwoo Seo ◽  
In-Jeong Chung

Face liveness detection is important for ensuring security. However, because faces are shown in photographs or on a display, it is difficult to detect the real face using the features of the face shape. In this paper, we propose a thermal face-convolutional neural network (Thermal Face-CNN) that knows the external knowledge regarding the fact that the real face temperature of the real person is 36~37 degrees on average. First, we compared the red, green, and blue (RGB) image with the thermal image to identify the data suitable for face liveness detection using a multi-layer neural network (MLP), convolutional neural network (CNN), and C-support vector machine (C-SVM). Next, we compared the performance of the algorithms and the newly proposed Thermal Face-CNN in a thermal image dataset. The experiment results show that the thermal image is more suitable than the RGB image for face liveness detection. Further, we also found that Thermal Face-CNN performs better than CNN, MLP, and C-SVM when the precision is slightly more crucial than recall through F-measure.

Author(s):  
Niha Kamal Basha ◽  
Aisha Banu Wahab

: Absence seizure is a type of brain disorder in which subject get into sudden lapses in attention. Which means sudden change in brain stimulation. Most of this type of disorder is widely found in children’s (5-18 years). These Electroencephalogram (EEG) signals are captured with long term monitoring system and are analyzed individually. In this paper, a Convolutional Neural Network to extract single channel EEG seizure features like Power, log sum of wavelet transform, cross correlation, and mean phase variance of each frame in a windows are extracted after pre-processing and classify them into normal or absence seizure class, is proposed as an empowerment of monitoring system by automatic detection of absence seizure. The training data is collected from the normal and absence seizure subjects in the form of Electroencephalogram. The objective is to perform automatic detection of absence seizure using single channel electroencephalogram signal as input. Here the data is used to train the proposed Convolutional Neural Network to extract and classify absence seizure. The Convolutional Neural Network consist of three layers 1] convolutional layer – which extract the features in the form of vector 2] Pooling layer – the dimensionality of output from convolutional layer is reduced and 3] Fully connected layer–the activation function called soft-max is used to find the probability distribution of output class. This paper goes through the automatic detection of absence seizure in detail and provide the comparative analysis of classification between Support Vector Machine and Convolutional Neural Network. The proposed approach outperforms the performance of Support Vector Machine by 80% in automatic detection of absence seizure and validated using confusion matrix.


Author(s):  
Wanli Wang ◽  
Botao Zhang ◽  
Kaiqi Wu ◽  
Sergey A Chepinskiy ◽  
Anton A Zhilenkov ◽  
...  

In this paper, a hybrid method based on deep learning is proposed to visually classify terrains encountered by mobile robots. Considering the limited computing resource on mobile robots and the requirement for high classification accuracy, the proposed hybrid method combines a convolutional neural network with a support vector machine to keep a high classification accuracy while improve work efficiency. The key idea is that the convolutional neural network is used to finish a multi-class classification and simultaneously the support vector machine is used to make a two-class classification. The two-class classification performed by the support vector machine is aimed at one kind of terrain that users are mostly concerned with. Results of the two classifications will be consolidated to get the final classification result. The convolutional neural network used in this method is modified for the on-board usage of mobile robots. In order to enhance efficiency, the convolutional neural network has a simple architecture. The convolutional neural network and the support vector machine are trained and tested by using RGB images of six kinds of common terrains. Experimental results demonstrate that this method can help robots classify terrains accurately and efficiently. Therefore, the proposed method has a significant potential for being applied to the on-board usage of mobile robots.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 742
Author(s):  
Canh Nguyen ◽  
Vasit Sagan ◽  
Matthew Maimaitiyiming ◽  
Maitiniyazi Maimaitijiang ◽  
Sourav Bhadra ◽  
...  

Early detection of grapevine viral diseases is critical for early interventions in order to prevent the disease from spreading to the entire vineyard. Hyperspectral remote sensing can potentially detect and quantify viral diseases in a nondestructive manner. This study utilized hyperspectral imagery at the plant level to identify and classify grapevines inoculated with the newly discovered DNA virus grapevine vein-clearing virus (GVCV) at the early asymptomatic stages. An experiment was set up at a test site at South Farm Research Center, Columbia, MO, USA (38.92 N, −92.28 W), with two grapevine groups, namely healthy and GVCV-infected, while other conditions were controlled. Images of each vine were captured by a SPECIM IQ 400–1000 nm hyperspectral sensor (Oulu, Finland). Hyperspectral images were calibrated and preprocessed to retain only grapevine pixels. A statistical approach was employed to discriminate two reflectance spectra patterns between healthy and GVCV vines. Disease-centric vegetation indices (VIs) were established and explored in terms of their importance to the classification power. Pixel-wise (spectral features) classification was performed in parallel with image-wise (joint spatial–spectral features) classification within a framework involving deep learning architectures and traditional machine learning. The results showed that: (1) the discriminative wavelength regions included the 900–940 nm range in the near-infrared (NIR) region in vines 30 days after sowing (DAS) and the entire visual (VIS) region of 400–700 nm in vines 90 DAS; (2) the normalized pheophytization index (NPQI), fluorescence ratio index 1 (FRI1), plant senescence reflectance index (PSRI), anthocyanin index (AntGitelson), and water stress and canopy temperature (WSCT) measures were the most discriminative indices; (3) the support vector machine (SVM) was effective in VI-wise classification with smaller feature spaces, while the RF classifier performed better in pixel-wise and image-wise classification with larger feature spaces; and (4) the automated 3D convolutional neural network (3D-CNN) feature extractor provided promising results over the 2D convolutional neural network (2D-CNN) in learning features from hyperspectral data cubes with a limited number of samples.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 639
Author(s):  
Chen Ma ◽  
Haifei Dang ◽  
Jun Du ◽  
Pengfei He ◽  
Minbo Jiang ◽  
...  

This paper proposes a novel metal additive manufacturing process, which is a composition of gas tungsten arc (GTA) and droplet deposition manufacturing (DDM). Due to complex physical metallurgical processes involved, such as droplet impact, spreading, surface pre-melting, etc., defects, including lack of fusion, overflow and discontinuity of deposited layers always occur. To assure the quality of GTA-assisted DDM-ed parts, online monitoring based on visual sensing has been implemented. The current study also focuses on automated defect classification to avoid low efficiency and bias of manual recognition by the way of convolutional neural network-support vector machine (CNN-SVM). The best accuracy of 98.9%, with an execution time of about 12 milliseconds to handle an image, proved our model can be enough to use in real-time feedback control of the process.


Friction ◽  
2021 ◽  
Author(s):  
Xiaobin Hu ◽  
Jian Song ◽  
Zhenhua Liao ◽  
Yuhong Liu ◽  
Jian Gao ◽  
...  

AbstractFinding the correct category of wear particles is important to understand the tribological behavior. However, manual identification is tedious and time-consuming. We here propose an automatic morphological residual convolutional neural network (M-RCNN), exploiting the residual knowledge and morphological priors between various particle types. We also employ data augmentation to prevent performance deterioration caused by the extremely imbalanced problem of class distribution. Experimental results indicate that our morphological priors are distinguishable and beneficial to largely boosting overall performance. M-RCNN demonstrates a much higher accuracy (0.940) than the deep residual network (0.845) and support vector machine (0.821). This work provides an effective solution for automatically identifying wear particles and can be a powerful tool to further analyze the failure mechanisms of artificial joints.


2021 ◽  
pp. 102568
Author(s):  
Mesut Ersin Sonmez ◽  
Numan Eczacıoglu ◽  
Numan Emre Gumuş ◽  
Muhammet Fatih Aslan ◽  
Kadir Sabanci ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document