scholarly journals Early Detection of Plant Viral Disease Using Hyperspectral Imaging and Deep Learning

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 742
Author(s):  
Canh Nguyen ◽  
Vasit Sagan ◽  
Matthew Maimaitiyiming ◽  
Maitiniyazi Maimaitijiang ◽  
Sourav Bhadra ◽  
...  

Early detection of grapevine viral diseases is critical for early interventions in order to prevent the disease from spreading to the entire vineyard. Hyperspectral remote sensing can potentially detect and quantify viral diseases in a nondestructive manner. This study utilized hyperspectral imagery at the plant level to identify and classify grapevines inoculated with the newly discovered DNA virus grapevine vein-clearing virus (GVCV) at the early asymptomatic stages. An experiment was set up at a test site at South Farm Research Center, Columbia, MO, USA (38.92 N, −92.28 W), with two grapevine groups, namely healthy and GVCV-infected, while other conditions were controlled. Images of each vine were captured by a SPECIM IQ 400–1000 nm hyperspectral sensor (Oulu, Finland). Hyperspectral images were calibrated and preprocessed to retain only grapevine pixels. A statistical approach was employed to discriminate two reflectance spectra patterns between healthy and GVCV vines. Disease-centric vegetation indices (VIs) were established and explored in terms of their importance to the classification power. Pixel-wise (spectral features) classification was performed in parallel with image-wise (joint spatial–spectral features) classification within a framework involving deep learning architectures and traditional machine learning. The results showed that: (1) the discriminative wavelength regions included the 900–940 nm range in the near-infrared (NIR) region in vines 30 days after sowing (DAS) and the entire visual (VIS) region of 400–700 nm in vines 90 DAS; (2) the normalized pheophytization index (NPQI), fluorescence ratio index 1 (FRI1), plant senescence reflectance index (PSRI), anthocyanin index (AntGitelson), and water stress and canopy temperature (WSCT) measures were the most discriminative indices; (3) the support vector machine (SVM) was effective in VI-wise classification with smaller feature spaces, while the RF classifier performed better in pixel-wise and image-wise classification with larger feature spaces; and (4) the automated 3D convolutional neural network (3D-CNN) feature extractor provided promising results over the 2D convolutional neural network (2D-CNN) in learning features from hyperspectral data cubes with a limited number of samples.

2019 ◽  
Vol 8 (2) ◽  
pp. 3960-3963

In this paper, we have done exploratory experiments using deep learning convolutional neural network framework to classify crops into cotton, sugarcane and mulberry. In this contribution we have used Earth Observing-1 hyperion hyperspectral remote sensing data as the input. Structured data has been extracted from hyperspectral data using a remote sensing tool. An analytical assessment shows that convolutional neural network (CNN) gives more accuracy over classical support vector machine (SVM) and random forest methods. It has been observed that accuracy of SVM is 75 %, accuracy of random forest classification is 78 % and accuracy of CNN using Adam optimizer is 99.3 % and loss is 2.74 %. CNN using RMSProp also gives the same accuracy 99.3 % and the loss is 4.43 %. This identified crop information will be used for finding crop production and for deciding market strategies


2021 ◽  
Vol 16 ◽  
Author(s):  
Farida Alaaeldin Mostafa ◽  
Yasmine Mohamed Afify ◽  
Rasha Mohamed Ismail ◽  
Nagwa Lotfy Badr

Background: Protein sequence analysis helps in the prediction of protein functions. As the number of proteins increases, it gives the bioinformaticians a challenge to analyze and study the similarity between them. Most of the existing protein analysis methods use Support Vector Machine. Deep learning did not receive much attention regarding protein analysis as it is noted that little work focused on studying the protein diseases classification. Objective: The contribution of this paper is to present a deep learning approach that classifies protein diseases based on protein descriptors. Methods: Different protein descriptors are used and decomposed into modified feature descriptors. Uniquely, we introduce using Convolutional Neural Network model to learn and classify protein diseases. The modified feature descriptors are fed to the Convolutional Neural Network model on a dataset of 1563 protein sequences classified into 3 different disease classes: Aids, Tumor suppressor, and Proto oncogene. Results: The usage of the modified feature descriptors shows a significant increase in the performance of the Convolutional Neural Network model over Support Vector Machine using different kernel functions. One modified feature descriptor improved by 19.8%, 27.9%, 17.6%, 21.5%, 17.3%, and 22% for evaluation metrics: Area Under the Curve, Matthews Correlation Coefficient, Accuracy, F1-score, Recall, and Precision, respectively. Conclusion: Results show that the prediction of the proposed modified feature descriptors significantly surpasses that of Support Vector Machine model.


2018 ◽  
Vol 7 (11) ◽  
pp. 418 ◽  
Author(s):  
Tian Jiang ◽  
Xiangnan Liu ◽  
Ling Wu

Accurate and timely information about rice planting areas is essential for crop yield estimation, global climate change and agricultural resource management. In this study, we present a novel pixel-level classification approach that uses convolutional neural network (CNN) model to extract the features of enhanced vegetation index (EVI) time series curve for classification. The goal is to explore the practicability of deep learning techniques for rice recognition in complex landscape regions, where rice is easily confused with the surroundings, by using mid-resolution remote sensing images. A transfer learning strategy is utilized to fine tune a pre-trained CNN model and obtain the temporal features of the EVI curve. Support vector machine (SVM), a traditional machine learning approach, is also implemented in the experiment. Finally, we evaluate the accuracy of the two models. Results show that our model performs better than SVM, with the overall accuracies being 93.60% and 91.05%, respectively. Therefore, this technique is appropriate for estimating rice planting areas in southern China on the basis of a pre-trained CNN model by using time series data. And more opportunity and potential can be found for crop classification by remote sensing and deep learning technique in the future study.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ashwini K ◽  
P. M. Durai Raj Vincent ◽  
Kathiravan Srinivasan ◽  
Chuan-Yu Chang

Neonatal infants communicate with us through cries. The infant cry signals have distinct patterns depending on the purpose of the cries. Preprocessing, feature extraction, and feature selection need expert attention and take much effort in audio signals in recent days. In deep learning techniques, it automatically extracts and selects the most important features. For this, it requires an enormous amount of data for effective classification. This work mainly discriminates the neonatal cries into pain, hunger, and sleepiness. The neonatal cry auditory signals are transformed into a spectrogram image by utilizing the short-time Fourier transform (STFT) technique. The deep convolutional neural network (DCNN) technique takes the spectrogram images for input. The features are obtained from the convolutional neural network and are passed to the support vector machine (SVM) classifier. Machine learning technique classifies neonatal cries. This work combines the advantages of machine learning and deep learning techniques to get the best results even with a moderate number of data samples. The experimental result shows that CNN-based feature extraction and SVM classifier provides promising results. While comparing the SVM-based kernel techniques, namely radial basis function (RBF), linear and polynomial, it is found that SVM-RBF provides the highest accuracy of kernel-based infant cry classification system provides 88.89% accuracy.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6666
Author(s):  
Kamil Książek ◽  
Michał Romaszewski ◽  
Przemysław Głomb ◽  
Bartosz Grabowski ◽  
Michał Cholewa

In recent years, growing interest in deep learning neural networks has raised a question on how they can be used for effective processing of high-dimensional datasets produced by hyperspectral imaging (HSI). HSI, traditionally viewed as being within the scope of remote sensing, is used in non-invasive substance classification. One of the areas of potential application is forensic science, where substance classification on the scenes is important. An example problem from that area—blood stain classification—is a case study for the evaluation of methods that process hyperspectral data. To investigate the deep learning classification performance for this problem we have performed experiments on a dataset which has not been previously tested using this kind of model. This dataset consists of several images with blood and blood-like substances like ketchup, tomato concentrate, artificial blood, etc. To test both the classic approach to hyperspectral classification and a more realistic application-oriented scenario, we have prepared two different sets of experiments. In the first one, Hyperspectral Transductive Classification (HTC), both a training and a test set come from the same image. In the second one, Hyperspectral Inductive Classification (HIC), a test set is derived from a different image, which is more challenging for classifiers but more useful from the point of view of forensic investigators. We conducted the study using several architectures like 1D, 2D and 3D convolutional neural networks (CNN), a recurrent neural network (RNN) and a multilayer perceptron (MLP). The performance of the models was compared with baseline results of Support Vector Machine (SVM). We have also presented a model evaluation method based on t-SNE and confusion matrix analysis that allows us to detect and eliminate some cases of model undertraining. Our results show that in the transductive case, all models, including the MLP and the SVM, have comparative performance, with no clear advantage of deep learning models. The Overall Accuracy range across all models is 98–100% for the easier image set, and 74–94% for the more difficult one. However, in a more challenging inductive case, selected deep learning architectures offer a significant advantage; their best Overall Accuracy is in the range of 57–71%, improving the baseline set by the non-deep models by up to 9 percentage points. We have presented a detailed analysis of results and a discussion, including a summary of conclusions for each tested architecture. An analysis of per-class errors shows that the score for each class is highly model-dependent. Considering this and the fact that the best performing models come from two different architecture families (3D CNN and RNN), our results suggest that tailoring the deep neural network architecture to hyperspectral data is still an open problem.


2017 ◽  
Vol 3 (2) ◽  
pp. 103-107 ◽  
Author(s):  
Jirapong Manit ◽  
Achim Schweikard ◽  
Floris Ernst

AbstractIn this paper, we presented a deep convolutional neural network (CNN) approach for forehead tissue thickness estimation. We use down sampled NIR laser backscattering images acquired from a novel marker-less near-infrared laser-based head tracking system, combined with the beam’s incident angle parameter. These two-channel augmented images were constructed for the CNN input, while a single node output layer represents the estimated value of the forehead tissue thickness. The models were – separately for each subject – trained and tested on datasets acquired from 30 subjects (high resolution MRI data is used as ground truth). To speed up training, we used a pre-trained network from the first subject to bootstrap training for each of the other subjects. We could show a clear improvement for the tissue thickness estimation (mean RMSE of 0.096 mm). This proposed CNN model outperformed previous support vector regression (mean RMSE of 0.155 mm) or Gaussian processes learning approaches (mean RMSE of 0.114 mm) and eliminated their restrictions for future research.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xueying Li ◽  
Pingping Fan ◽  
Zongmin Li ◽  
Guangyuan Chen ◽  
Huimin Qiu ◽  
...  

Changes in land cover will cause the changes in the climate and environmental characteristics, which has an important influence on the social economy and ecosystem. The main form of land cover is different types of soil. Compared with traditional methods, visible and near-infrared spectroscopy technology can classify different types of soil rapidly, effectively, and nondestructively. Based on the visible near-infrared spectroscopy technology, this paper takes the soil of six different land cover types in Qingdao, China orchards, woodlands, tea plantations, farmlands, bare lands, and grasslands as examples and establishes a convolutional neural network classification model. The classification results of different number of training samples are analyzed and compared with the support vector machine algorithm. Under the condition that Kennard–Stone algorithm divides the calibration set, the classification results of six different soil types and single six soil types by convolutional neural network are better than those by the support vector machine. Under the condition of randomly dividing the calibration set according to the proportion of 1/3 and 1/4, the classification results by convolutional neural network are also better. The aim of this study is to analyze the feasibility of land cover classification with small samples by convolutional neural network and, according to the deep learning algorithm, to explore new methods for rapid, nondestructive, and accurate classification of the land cover.


2021 ◽  
Vol 13 (19) ◽  
pp. 3953
Author(s):  
Patrick Clifton Gray ◽  
Diego F. Chamorro ◽  
Justin T. Ridge ◽  
Hannah Rae Kerner ◽  
Emily A. Ury ◽  
...  

The ability to accurately classify land cover in periods before appropriate training and validation data exist is a critical step towards understanding subtle long-term impacts of climate change. These trends cannot be properly understood and distinguished from individual disturbance events or decadal cycles using only a decade or less of data. Understanding these long-term changes in low lying coastal areas, home to a huge proportion of the global population, is of particular importance. Relatively simple deep learning models that extract representative spatiotemporal patterns can lead to major improvements in temporal generalizability. To provide insight into major changes in low lying coastal areas, our study (1) developed a recurrent convolutional neural network that incorporates spectral, spatial, and temporal contexts for predicting land cover class, (2) evaluated this model across time and space and compared this model to conventional Random Forest and Support Vector Machine methods as well as other deep learning approaches, and (3) applied this model to classify land cover across 20 years of Landsat 5 data in the low-lying coastal plain of North Carolina, USA. We observed striking changes related to sea level rise that support evidence on a smaller scale of agricultural land and forests transitioning into wetlands and “ghost forests”. This work demonstrates that recurrent convolutional neural networks should be considered when a model is needed that can generalize across time and that they can help uncover important trends necessary for understanding and responding to climate change in vulnerable coastal regions.


2021 ◽  
Author(s):  
Ewerthon Dyego de Araújo Batista ◽  
Wellington Candeia de Araújo ◽  
Romeryto Vieira Lira ◽  
Laryssa Izabel de Araújo Batista

Dengue é um problema de saúde pública no Brasil, os casos da doença voltaram a crescer na Paraíba. O boletim epidemiológico da Paraíba, divulgado em agosto de 2021, informa um aumento de 53% de casos em relação ao ano anterior. Técnicas de Machine Learning (ML) e de Deep Learning estão sendo utilizadas como ferramentas para a predição da doença e suporte ao seu combate. Por meio das técnicas Random Forest (RF), Support Vector Regression (SVR), Multilayer Perceptron (MLP), Long ShortTerm Memory (LSTM) e Convolutional Neural Network (CNN), este artigo apresenta um sistema capaz de realizar previsões de internações causadas por dengue para as cidades Bayeux, Cabedelo, João Pessoa e Santa Rita. O sistema conseguiu realizar previsões para Bayeux com taxa de erro 0,5290, já em Cabedelo o erro foi 0,92742, João Pessoa 9,55288 e Santa Rita 0,74551.


2018 ◽  
Vol 10 (11) ◽  
pp. 1840 ◽  
Author(s):  
Meng Zhang ◽  
Hui Lin ◽  
Guangxing Wang ◽  
Hua Sun ◽  
Jing Fu

Rice is one of the world’s major staple foods, especially in China. Highly accurate monitoring on rice-producing land is, therefore, crucial for assessing food supplies and productivity. Recently, the deep-learning convolutional neural network (CNN) has achieved considerable success in remote-sensing data analysis. A CNN-based paddy-rice mapping method using the multitemporal Landsat 8, phenology data, and land-surface temperature (LST) was developed during this study. First, the spatial–temporal adaptive reflectance fusion model (STARFM) was used to blend the moderate-resolution imaging spectroradiometer (MODIS) and Landsat data for obtaining multitemporal Landsat-like data. Subsequently, the threshold method is applied to derive the phenological variables from the Landsat-like (Normalized difference vegetation index) NDVI time series. Then, a generalized single-channel algorithm was employed to derive LST from the Landsat 8. Finally, multitemporal Landsat 8 spectral images, combined with phenology and LST data, were employed to extract paddy-rice information using a patch-based deep-learning CNN algorithm. The results show that the proposed method achieved an overall accuracy of 97.06% and a Kappa coefficient of 0.91, which are 6.43% and 0.07 higher than that of the support vector machine method, and 7.68% and 0.09 higher than that of the random forest method, respectively. Moreover, the Landsat-derived rice area is strongly correlated (R2 = 0.9945) with government statistical data, demonstrating that the proposed method has potential in large-scale paddy-rice mapping using moderate spatial resolution images.


Sign in / Sign up

Export Citation Format

Share Document