scholarly journals Kinematics Modeling and Analysis of Mid-Low Speed Maglev Vehicle with Screw and Product of Exponential Theory

Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1201
Author(s):  
Peng Leng ◽  
Jie Li ◽  
Yuxin Jin

Maglev transportation is a new type of rail transit, whose vehicle is different from the two-bogie structure of the wheel-rail train. Generally, it consists of four to five suspension frames supporting a car body in parallel. The moving mechanism of a vehicle often consists of hundreds of moving parts, showing a multi-rigid body system in serial-parallel structure. At present, there is no theoretical framework for systematically and accurately describing the kinematics and dynamics of the Maglev train. The design work is at the level of simple equivalent estimation or measurement from the CAD drawing, which makes the system performance analysis and optimization work unable to be carried out scientifically. Based on the theoretical framework of screw theory and exponential mapping, the forward kinematics modeling, inverse kinematics solution, transition curve modeling and computational analysis methods for the Maglev train are proposed in this paper. A systematic and accurate theoretical framework is constructed for the modeling and analysis of the motion mechanism of the Maglev train, which makes the design and analysis of the Maglev train at the scientific level.

2019 ◽  
Vol 1237 ◽  
pp. 052042 ◽  
Author(s):  
Fan Guiju ◽  
Li Zhao ◽  
Feng Tiantao ◽  
Zhang Hao ◽  
Qin Fu ◽  
...  

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 24637-24645
Author(s):  
Sansan Ding ◽  
Weitao Han ◽  
Jinji Sun ◽  
Fujie Jiang ◽  
Guimei Deng ◽  
...  

2018 ◽  
Vol 15 (6) ◽  
pp. 172988141881829 ◽  
Author(s):  
Rongbo Zhao ◽  
Zhiping Shi ◽  
Yong Guan ◽  
Zhenzhou Shao ◽  
Qianying Zhang ◽  
...  

The traditional Denavit–Hatenberg method is a relatively mature method for modeling the kinematics of robots. However, it has an obvious drawback, in that the parameters of the Denavit–Hatenberg model are discontinuous, resulting in singularity when the adjacent joint axes are parallel or close to parallel. As a result, this model is not suitable for kinematic calibration. In this article, to avoid the problem of singularity, the product of exponentials method based on screw theory is employed for kinematics modeling. In addition, the inverse kinematics of the 6R robot manipulator is solved by adopting analytical, geometric, and algebraic methods combined with the Paden–Kahan subproblem as well as matrix theory. Moreover, the kinematic parameters of the Denavit–Hatenberg and the product of exponentials-based models are analyzed, and the singularity of the two models is illustrated. Finally, eight solutions of inverse kinematics are obtained, and the correctness and high level of accuracy of the algorithm proposed in this article are verified. This algorithm provides a reference for the inverse kinematics of robots with three adjacent parallel joints.


2020 ◽  
Vol 17 (2) ◽  
pp. 172988142091995
Author(s):  
Shi Baoyu ◽  
Wu Hongtao

A new type of parallel robot ROBO_003 is presented. Its mechanisms, kinematics, and virtual prototype technology are introduced. The research of degrees of freedom (DOF) is based on screw theory, a set of screw is separated as a branch, which named as constrain screw. The type of three DOF gained by counting constrain screw, the moving platform’s frame, and base platform’s frame is set, respectively, a complete kinematic research including closed-form solutions for direct kinematic problem. The 3-D model of ROBO_003 is established using SOLIDWORKS; position and orientation of motion platform can be gained using ADMAS, which is a type of virtual prototype technology. The resultant shows that the structure of ROBO_003 is reasonable, three DOF of motion platform can be operated in a reasonable range, the solutions to the direct kinematics are right, and robot ROBO_003 can be used in many industrial fields. The research of this article provides a basis for the practical application of parallel robotics ROBO_003.


2013 ◽  
Vol 798-799 ◽  
pp. 464-467
Author(s):  
Jian Lu ◽  
Guan Bin Gao ◽  
Hui Ping Yang

The Articulated Arm Coordinate Measuring Machine (AACMM) is a new type of non-orthogonal system precision instrument with the advantages of large measuring range, small volume, low weight and portability. To improve the measurement accuracy of AACMMs, an error analysis and calibration method for AACMMs is proposed. The kinematic model of the AACMM was established with D-H model, and then the error model of the AACMM was established on the basis of kinematic model with total differential transforming method and the singular value decomposition of Jacobian matrix and the decomposition of orthogonal matrix elementary row transform. Finally, the error model was validated by position error residual calculation. The error model provides a theoretical foundation for calibration and compensation of the AACMM.


2019 ◽  
Vol 9 (3) ◽  
pp. 423-438
Author(s):  
Maria Cláudia Gavioli ◽  
Sênia Regina Bastos

This work aims to show how commensality, a dimension of hospitality, operates in the context of new Internet businesses. It uses theories of hospitality to analyse meal-sharing websites that seek to capitalize on the booming interest in gastronomy and the growing trend of the sharing economy. This article is one piece of a broader research project that aims to identify and characterize the protagonists of a new type of gastronomy and commensality business conducted in domestic environments, and promoted on meal-sharing websites in which professional or amateur chefs (hosts) and diners (guests) are connected with one another. To perform the study we conducted documentary research through Internet searches on shared gastronomic experiences; netnographic research on meal-sharing websites; and interviews with hosts registered on these platforms and with the owner of the Brazilian website Dinneer. Using a theoretical framework focusing on hospitality and commensality, which deals with the relations between hosts and guests, their motivations and wishes, and the tacit and explicit rules by which they are bound, we analysed the contents of the websites and the interview transcripts. The results of our research reveal a paradox about the services offered on the websites and the reality of the business for hosts and diners.


2015 ◽  
Vol 7 (2) ◽  
Author(s):  
Ketao Zhang ◽  
Chen Qiu ◽  
Jian S. Dai

The wormlike robots are capable of imitating amazing locomotion of slim creatures. This paper presents a novel centimeter-scale worm robot inspired by a kirigami parallel structure with helical motion. The motion characteristics of the kirigami structure are unravelled by analyzing the equivalent kinematic model in terms of screw theory. This reveals that the kirigami parallel structure with three degrees-of-freedom (DOF) motion is capable of implementing both peristalsis and inchworm-type motion. In light of the revealed motion characteristics, a segmented worm robot which is able to imitate contracting motion, bending motion of omega shape and twisting motion in nature is proposed by integrating kirigami parallel structures successively. Following the kinematic and static characteristics of the kirigami structure, actuation models are explored by employing the linear shape-memory-alloy (SMA) coil springs and the complete procedure for determining the geometrical parameters of the SMA coil springs. Actuation phases for the actuation model with two SMA springs are enumerated and with four SMA springs are calculated based on the Burnside's lemma. In this paper, a prototype of the worm robot with three segments is presented together with a paper-made body structure and integrated SMA coil springs. This centimeter-scale prototype of the worm robot is lightweight and can be used in confined environments for detection and inspection. The study presents an interesting approach of integrating SMA actuators in kirigami-enabled parallel structures for the development of compliant and miniaturized robots.


Author(s):  
Xu Zhao ◽  
Miao Zhuang

General operation means NPP start-up and shut down operation, and it is one of the most important NPP operation manners. It is necessary to design a general operation strategy and related procedures for those advanced Gen III PWR reactor because of their innovative design features. By applying function analysis and task analysis technology, and considering the innovative design features, this paper carries out a hypothetical advanced PWR (HAP) general operation strategy design work with a systematical method. It is indicated that this method is able to be used in the general operation strategy design of other new type advanced reactors efficiently and accurately as a common method.


Sign in / Sign up

Export Citation Format

Share Document