scholarly journals Exploration with Multiple Random ε-Buffers in Off-Policy Deep Reinforcement Learning

Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1352 ◽  
Author(s):  
Kim ◽  
Park

In terms of deep reinforcement learning (RL), exploration is highly significant in achieving better generalization. In benchmark studies, ε-greedy random actions have been used to encourage exploration and prevent over-fitting, thereby improving generalization. Deep RL with random ε-greedy policies, such as deep Q-networks (DQNs), can demonstrate efficient exploration behavior. A random ε-greedy policy exploits additional replay buffers in an environment of sparse and binary rewards, such as in the real-time online detection of network securities by verifying whether the network is “normal or anomalous.” Prior studies have illustrated that a prioritized replay memory attributed to a complex temporal difference error provides superior theoretical results. However, another implementation illustrated that in certain environments, the prioritized replay memory is not superior to the randomly-selected buffers of random ε-greedy policy. Moreover, a key challenge of hindsight experience replay inspires our objective by using additional buffers corresponding to each different goal. Therefore, we attempt to exploit multiple random ε-greedy buffers to enhance explorations for a more near-perfect generalization with one original goal in off-policy RL. We demonstrate the benefit of off-policy learning from our method through an experimental comparison of DQN and a deep deterministic policy gradient in terms of discrete action, as well as continuous control for complete symmetric environments.

2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Philip Odonkor ◽  
Kemper Lewis

The control of shared energy assets within building clusters has traditionally been confined to a discrete action space, owing in part to a computationally intractable decision space. In this work, we leverage the current state of the art in reinforcement learning (RL) for continuous control tasks, the deep deterministic policy gradient (DDPG) algorithm, toward addressing this limitation. The goals of this paper are twofold: (i) to design an efficient charged/discharged dispatch policy for a shared battery system within a building cluster and (ii) to address the continuous domain task of determining how much energy should be charged/discharged at each decision cycle. Experimentally, our results demonstrate an ability to exploit factors such as energy arbitrage, along with the continuous action space toward demand peak minimization. This approach is shown to be computationally tractable, achieving efficient results after only 5 h of simulation. Additionally, the agent showed an ability to adapt to different building clusters, designing unique control strategies to address the energy demands of the clusters studied.


2020 ◽  
Vol 34 (04) ◽  
pp. 3316-3323
Author(s):  
Qingpeng Cai ◽  
Ling Pan ◽  
Pingzhong Tang

Reinforcement learning algorithms such as the deep deterministic policy gradient algorithm (DDPG) has been widely used in continuous control tasks. However, the model-free DDPG algorithm suffers from high sample complexity. In this paper we consider the deterministic value gradients to improve the sample efficiency of deep reinforcement learning algorithms. Previous works consider deterministic value gradients with the finite horizon, but it is too myopic compared with infinite horizon. We firstly give a theoretical guarantee of the existence of the value gradients in this infinite setting. Based on this theoretical guarantee, we propose a class of the deterministic value gradient algorithm (DVG) with infinite horizon, and different rollout steps of the analytical gradients by the learned model trade off between the variance of the value gradients and the model bias. Furthermore, to better combine the model-based deterministic value gradient estimators with the model-free deterministic policy gradient estimator, we propose the deterministic value-policy gradient (DVPG) algorithm. We finally conduct extensive experiments comparing DVPG with state-of-the-art methods on several standard continuous control benchmarks. Results demonstrate that DVPG substantially outperforms other baselines.


Information ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 77 ◽  
Author(s):  
Juan Chen ◽  
Zhengxuan Xue ◽  
Daiqian Fan

In order to solve the problem of vehicle delay caused by stops at signalized intersections, a micro-control method of a left-turning connected and automated vehicle (CAV) based on an improved deep deterministic policy gradient (DDPG) is designed in this paper. In this paper, the micro-control of the whole process of a left-turn vehicle approaching, entering, and leaving a signalized intersection is considered. In addition, in order to solve the problems of low sampling efficiency and overestimation of the critic network of the DDPG algorithm, a positive and negative reward experience replay buffer sampling mechanism and multi-critic network structure are adopted in the DDPG algorithm in this paper. Finally, the effectiveness of the signal control method, six DDPG-based methods (DDPG, PNRERB-1C-DDPG, PNRERB-3C-DDPG, PNRERB-5C-DDPG, PNRERB-5CNG-DDPG, and PNRERB-7C-DDPG), and four DQN-based methods (DQN, Dueling DQN, Double DQN, and Prioritized Replay DQN) are verified under 0.2, 0.5, and 0.7 saturation degrees of left-turning vehicles at a signalized intersection within a VISSIM simulation environment. The results show that the proposed deep reinforcement learning method can get a number of stops benefits ranging from 5% to 94%, stop time benefits ranging from 1% to 99%, and delay benefits ranging from −17% to 93%, respectively compared with the traditional signal control method.


2020 ◽  
Vol 12 (22) ◽  
pp. 3789
Author(s):  
Bo Li ◽  
Zhigang Gan ◽  
Daqing Chen ◽  
Dyachenko Sergey Aleksandrovich

This paper combines deep reinforcement learning (DRL) with meta-learning and proposes a novel approach, named meta twin delayed deep deterministic policy gradient (Meta-TD3), to realize the control of unmanned aerial vehicle (UAV), allowing a UAV to quickly track a target in an environment where the motion of a target is uncertain. This approach can be applied to a variety of scenarios, such as wildlife protection, emergency aid, and remote sensing. We consider a multi-task experience replay buffer to provide data for the multi-task learning of the DRL algorithm, and we combine meta-learning to develop a multi-task reinforcement learning update method to ensure the generalization capability of reinforcement learning. Compared with the state-of-the-art algorithms, namely the deep deterministic policy gradient (DDPG) and twin delayed deep deterministic policy gradient (TD3), experimental results show that the Meta-TD3 algorithm has achieved a great improvement in terms of both convergence value and convergence rate. In a UAV target tracking problem, Meta-TD3 only requires a few steps to train to enable a UAV to adapt quickly to a new target movement mode more and maintain a better tracking effectiveness.


2020 ◽  
Vol 17 (1) ◽  
pp. 172988141989834
Author(s):  
Guoyu Zuo ◽  
Qishen Zhao ◽  
Jiahao Lu ◽  
Jiangeng Li

The goal of reinforcement learning is to enable an agent to learn by using rewards. However, some robotic tasks naturally specify with sparse rewards, and manually shaping reward functions is a difficult project. In this article, we propose a general and model-free approach for reinforcement learning to learn robotic tasks with sparse rewards. First, a variant of Hindsight Experience Replay, Curious and Aggressive Hindsight Experience Replay, is proposed to improve the sample efficiency of reinforcement learning methods and avoid the need for complicated reward engineering. Second, based on Twin Delayed Deep Deterministic policy gradient algorithm, demonstrations are leveraged to overcome the exploration problem and speed up the policy training process. Finally, the action loss is added into the loss function in order to minimize the vibration of output action while maximizing the value of the action. The experiments on simulated robotic tasks are performed with different hyperparameters to verify the effectiveness of our method. Results show that our method can effectively solve the sparse reward problem and obtain a high learning speed.


2020 ◽  
Vol 12 (4) ◽  
pp. 640 ◽  
Author(s):  
Kaifang Wan ◽  
Xiaoguang Gao ◽  
Zijian Hu ◽  
Gaofeng Wu

In this paper, a novel deep reinforcement learning (DRL) method, and robust deep deterministic policy gradient (Robust-DDPG), is proposed for developing a controller that allows robust flying of an unmanned aerial vehicle (UAV) in dynamic uncertain environments. This technique is applicable in many fields, such as penetration and remote surveillance. The learning-based controller is constructed with an actor-critic framework, and can perform a dual-channel continuous control (roll and speed) of the UAV. To overcome the fragility and volatility of original DDPG, three critical learning tricks are introduced in Robust-DDPG: (1) Delayed-learning trick, providing stable learnings, while facing dynamic environments; (2) adversarial attack trick, improving policy’s adaptability to uncertain environments; (3) mixed exploration trick, enabling faster convergence of the model. The training experiments show great improvement in its convergence speed, convergence effect, and stability. The exploiting experiments demonstrate high efficiency in providing the UAV a shorter and smoother path. While, the generalization experiments verify its better adaptability to complicated, dynamic and uncertain environments, comparing to Deep Q Network (DQN) and DDPG algorithms.


2021 ◽  
Vol 12 (3) ◽  
pp. 1-21
Author(s):  
Shilei Li ◽  
Meng Li ◽  
Jiongming Su ◽  
Shaofei Chen ◽  
Zhimin Yuan ◽  
...  

Efficient and stable exploration remains a key challenge for deep reinforcement learning (DRL) operating in high-dimensional action and state spaces. Recently, a more promising approach by combining the exploration in the action space with the exploration in the parameters space has been proposed to get the best of both methods. In this article, we propose a new iterative and close-loop framework by combining the evolutionary algorithm (EA), which does explorations in a gradient-free manner directly in the parameters space with an actor-critic, and the deep deterministic policy gradient (DDPG) reinforcement learning algorithm, which does explorations in a gradient-based manner in the action space to make these two methods cooperate in a more balanced and efficient way. In our framework, the policies represented by the EA population (the parametric perturbation part) can evolve in a guided manner by utilizing the gradient information provided by the DDPG and the policy gradient part (DDPG) is used only as a fine-tuning tool for the best individual in the EA population to improve the sample efficiency. In particular, we propose a criterion to determine the training steps required for the DDPG to ensure that useful gradient information can be generated from the EA generated samples and the DDPG and EA part can work together in a more balanced way during each generation. Furthermore, within the DDPG part, our algorithm can flexibly switch between fine-tuning the same previous RL-Actor and fine-tuning a new one generated by the EA according to different situations to further improve the efficiency. Experiments on a range of challenging continuous control benchmarks demonstrate that our algorithm outperforms related works and offers a satisfactory trade-off between stability and sample efficiency.


Actuators ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 254
Author(s):  
Yangyang Hou ◽  
Huajie Hong ◽  
Dasheng Xu ◽  
Zhe Zeng ◽  
Yaping Chen ◽  
...  

Deep Reinforcement Learning (DRL) has been an active research area in view of its capability in solving large-scale control problems. Until presently, many algorithms have been developed, such as Deep Deterministic Policy Gradient (DDPG), Twin-Delayed Deep Deterministic Policy Gradient (TD3), and so on. However, the converging achievement of DRL often requires extensive collected data sets and training episodes, which is data inefficient and computing resource consuming. Motivated by the above problem, in this paper, we propose a Twin-Delayed Deep Deterministic Policy Gradient algorithm with a Rebirth Mechanism, Tetanic Stimulation and Amnesic Mechanisms (ATRTD3), for continuous control of a multi-DOF manipulator. In the training process of the proposed algorithm, the weighting parameters of the neural network are learned using Tetanic stimulation and Amnesia mechanism. The main contribution of this paper is that we show a biomimetic view to speed up the converging process by biochemical reactions generated by neurons in the biological brain during memory and forgetting. The effectiveness of the proposed algorithm is validated by a simulation example including the comparisons with previously developed DRL algorithms. The results indicate that our approach shows performance improvement in terms of convergence speed and precision.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jian Liu ◽  
Liming Feng

The reinforcement learning algorithms based on policy gradient may fall into local optimal due to gradient disappearance during the update process, which in turn affects the exploration ability of the reinforcement learning agent. In order to solve the above problem, in this paper, the cross-entropy method (CEM) in evolution policy, maximum mean difference (MMD), and twin delayed deep deterministic policy gradient algorithm (TD3) are combined to propose a diversity evolutionary policy deep reinforcement learning (DEPRL) algorithm. By using the maximum mean discrepancy as a measure of the distance between different policies, some of the policies in the population maximize the distance between them and the previous generation of policies while maximizing the cumulative return during the gradient update. Furthermore, combining the cumulative returns and the distance between policies as the fitness of the population encourages more diversity in the offspring policies, which in turn can reduce the risk of falling into local optimal due to the disappearance of the gradient. The results in the MuJoCo test environment show that DEPRL has achieved excellent performance on continuous control tasks; especially in the Ant-v2 environment, the return of DEPRL ultimately achieved a nearly 20% improvement compared to TD3.


Author(s):  
Igor Kuznetsov ◽  
Andrey Filchenkov

Episodic memory lets reinforcement learning algorithms remember and exploit promising experience from the past to improve agent performance. Previous works on memory mechanisms show benefits of using episodic-based data structures for discrete action problems in terms of sample-efficiency. The application of episodic memory for continuous control with a large action space is not trivial. Our study aims to answer the question: can episodic memory be used to improve agent's performance in continuous control? Our proposed algorithm combines episodic memory with Actor-Critic architecture by modifying critic's objective. We further improve performance by introducing episodic-based replay buffer prioritization. We evaluate our algorithm on OpenAI gym domains and show greater sample-efficiency compared with the state-of-the art model-free off-policy algorithms.


Sign in / Sign up

Export Citation Format

Share Document