scholarly journals Modelling of Material Removal in Abrasive Belt Grinding Process: A Regression Approach

Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 99 ◽  
Author(s):  
Vigneashwara Pandiyan ◽  
Wahyu Caesarendra ◽  
Adam Glowacz ◽  
Tegoeh Tjahjowidodo

This article explores the effects of parameters such as cutting speed, force, polymer wheel hardness, feed, and grit size in the abrasive belt grinding process to model material removal. The process has high uncertainty during the interaction between the abrasives and the underneath surface, therefore the theoretical material removal models developed in belt grinding involve assumptions. A conclusive material removal model can be developed in such a dynamic process involving multiple parameters using statistical regression techniques. Six different regression modelling methodologies, namely multiple linear regression, stepwise regression, artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), support vector regression (SVR) and random forests (RF) have been applied to the experimental data determined using the Taguchi design of experiments (DoE). The results obtained by the six models have been assessed and compared. All five models, except multiple linear regression, demonstrated a relatively low prediction error. Regarding the influence of the examined belt grinding parameters on the material removal, inference from some statistical models shows that the grit size has the most substantial effect. The proposed regression models can likely be applied for achieving desired material removal by defining process parameter levels without the need to conduct physical belt grinding experiments.

2014 ◽  
Vol 18 (1) ◽  
pp. 15-30 ◽  
Author(s):  
Shuihua Wu ◽  
Kazem Kazerounian ◽  
Zhongxue Gan ◽  
Yunquan Sun

2017 ◽  
Vol 7 (4) ◽  
pp. 363 ◽  
Author(s):  
Vigneashwara Pandiyan ◽  
Wahyu Caesarendra ◽  
Tegoeh Tjahjowidodo ◽  
Gunasekaran Praveen

2021 ◽  
Author(s):  
Huan Ye ◽  
Zhitong Chen ◽  
Zhuoqun Xie ◽  
Shangbin Li ◽  
Shuai Su

Abstract Contact calculation is of great importance in predicting the material removal (MR) of flexible grinding process (FGP). The contact is mostly considered approximately constant in the existing MR models, while the situations that contact varies a lot after FGP are ignored. Therefore, a novel model is proposed in this paper to take those situations into consideration. Firstly, the nonconstant-contact situation is introduced. Then an equivalent method is developed to convert the nonconstant-contact grinding process into the accumulation of several quasi-constant-contact grinding processes. Based on the equivalent method, a MR model is established, and the procedure to obtain the model parameters by the finite element analysis (FEA) is introduced. In the end, the equivalent method and the MR model are tested by a series experiments of different process parameters. Results show that the proposed MR model can predict the material removal effectively for the nonconstant-contact situations.


2012 ◽  
Vol 565 ◽  
pp. 76-81 ◽  
Author(s):  
Yun Huang ◽  
Xiao Xiao Ye ◽  
Ming De Zhang ◽  
Hong Wen Fang

This document provides an analysis of the structure characteristics and grinding process requirements of leading and trailing edges, and proposes a grinding process of leading and trailing edges, established a uneven grinding margin model, research the quantitative grinding pressure control method of uneven margin, as well as the error compensation technology of blade machining deformation, and experiments were carried out on the basis of theories above. The experimental results demonstrate that: after grinding, the edge roundness improved greatly, dimensional accuracy of edge radius can reach ±0.07mm.Compared with the traditional manual polishing method, the grinding quality improved significantly.


Author(s):  
Guohong Xie ◽  
Ji Zhao ◽  
Xin Wang ◽  
Huan Liu ◽  
Yan Mu ◽  
...  

In the abrasive belt grinding process, there are factors affecting the machining stability, efficiency, and quality. Based on the analysis of the grinding process, the normal force in the contact area between the abrasive belt and the workpiece is a major factor. By comparing constant force and non-constant force grinding, the results imply that keeping the grinding force constant will achieve desired material removal and better surface quality. The phenomenon of over- and under-cutting of the workpieces can also be avoided by a constant normal force. In this article, a controllable and flexible belt grinding mechanism accompanied with a mechanical decoupling control strategy is built and tested. Afterward, a detailed comparison is made between the traditional force-position coupling system and the proposed decoupling control system. The proposed control system suppresses the interference between the position and force control systems. The contact force is directly measured and controlled without detecting the position of other components in the tool system. The complexity of the control system is thereby reduced. Finally, several grinding experiments are carried out. The standard deviation and coefficient of variation of the measured normal force are kept within 0.25 and 0.02, respectively. The experiment results reveal that the mechanical decoupling system performs well in force control compared with the traditional force-position coupling system. In addition, the surface roughness Ra < 0.4 μm, the surface quality of the workpiece is improved significantly with the constant force controller.


2010 ◽  
Vol 154-155 ◽  
pp. 647-653
Author(s):  
Jian Qiang Wu ◽  
Yun Huang ◽  
Zhi Huang

Marine propeller blade is composite of the free form surface, its machining method has been a difficult thing. The blade is processed by 4-axis belt grinding machine in this experiment, this paper analyze that the wear of the abrasive belt and the processing precision and the material removal rate of the blade according to the grinding performance of the blade material, the structural features of the vane, and the theory of 4-aixs belt grinding machine. Draw formulas with time for the belt wear height and the actual grinding depth. The life expectancy of the ceramic abrasive belt is the longest, and its the material removal rate is maximum in Three kinds of belt,and when the belt line speed is 30m/s or so, the material removal rate is maximum.


Sign in / Sign up

Export Citation Format

Share Document