scholarly journals Application of Fractional Derivative Without Singular and Local Kernel to Enhanced Heat Transfer in CNTs Nanofluid Over an Inclined Plate

Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 768 ◽  
Author(s):  
Muhammad Saqib ◽  
Abdul Rahman Mohd Kasim ◽  
Nurul Farahain Mohammad ◽  
Dennis Ling Chuan Ching ◽  
Sharidan Shafie

Nanofluids are a novel class of heat transfer fluid that plays a vital role in industries. In mathematical investigations, these fluids are modeled in terms of traditional integer-order partial differential equations (PDEs). It is recognized that traditional PDEs cannot decode the complex behavior of physical flow parameters and memory effects. Therefore, this article intends to study the mixed convection heat transfer in nanofluid over an inclined vertical plate via fractional derivatives approach. The problem in hand is modeled in connection with Atangana–Baleanu fractional derivatives without singular and local kernel with a strong memory. Human blood is considered as base fluid and carbon nanotube (CNTs) (single-wall carbon nanotubes (SWCNTs) and multi-wall carbon nanotubes (MWCNTs)) are dispersed into it to form blood-CNTs nanofluid. The nanofluid is considered to flow in a saturated porous medium under the influence of an applied magnetic field. The exact analytical expressions for velocity and temperature profiles are acquired using the Laplace transform technique and plotted in various graphs. The empirical results indicate that the memory effect decreases with increasing fractional parameters in the case of both temperature and velocity profiles. Moreover, the temperature profile is higher for blood SWCNTs because of higher thermal conductivity whereas this trend is found opposite in the case of velocity profile due to densities difference.

Author(s):  
Muhammad Saqib ◽  
Abdul Rahman Mohd Kasim ◽  
Nurul Farahain Mohammad ◽  
Dennis Ling Chuan Ching ◽  
Sharidan Shafie

Nanofluids are a novel class of heat transfer fluid that plays a vital role in industries. In mathematical investigations, these fluids are modeled in terms of traditional integer-order partial differential equations (PDEs). It is recognized that traditional PDEs cannot decode the complex behavior of physical flow parameters and memory effects. Therefore, this article intends to study the mixed convection heat transfer in nanofluid over an inclined vertical plate via fractional derivatives approach. The problem in hand is modeled in connection with Atangana-Baleanu fractional derivatives without singular and local kernel having strong memory. The human blood is considered as base fluid dispersing carbon nanotube (CNTs) (single-wall carbon nanotubes (SWCNTs) and multi-wall carbon nanotubes(MWCNTs )) into it to form blood-CNTs nanofluid. The nanofluids are considered to flow in a saturated porous medium under the influence of an applied magnetic field. The exact analytical expressions for velocity and temperature profiles are acquired using the Laplace transform technique and plotted in various graphs. The empirical results indicate that the memory effect decreases with increasing fractional parameters in the case of both temperature and velocity profiles. Moreover, the temperature profile is higher for blood-SWCNTs by reason of higher thermal conductivity whereas, this trend is opposite in case of velocity profile due densities difference.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3243 ◽  
Author(s):  
Nur Anuar ◽  
Norfifah Bachok ◽  
Ioan Pop

The flow and heat transfer characteristics of both single-wall and multi-wall carbon nanotubes (CNTs) with water and kerosene as base fluid on a moving plate with slip effect are studied numerically. By employing similarity transformation, governing equations are transformed into a set of nonlinear ordinary equations. These equations are solved numerically using the bvp4c solver in Matlab which is a very efficient finite difference method. The influence of numerous parameters such as nanoparticle volume fraction, velocity ratio parameter and first order slip parameter on velocity, temperature, skin friction and heat transfer rate are further explored and discussed in the form of graphical and tabular forms. The results reveal that dual solutions exist when the plate and free stream move in the opposite direction and slip parameter was found to widen the range of the possible solutions. However, skin friction coefficients decrease, whereas the heat transfer increases in the presence of slip parameter. Single-wall carbon nanotubes (SWCNTs) give higher skin friction and heat transfer compared to multi-wall carbon nanotubes (MWCNTs) due to the fact that they have higher density and thermal conductivity. A stability analysis is carried out to determine the stability of the solutions obtained.


Author(s):  
C. Sridevi ◽  
A. Sailakumari

Background: In this paper, transient two-dimensional laminar boundary layer viscous incompressible free convective flow of water based nanofluid with carbon nanotubes (CNTs) past a moving vertical cylinder with variable surface temperature is studied numerically in the presence of thermal radiation and heat generation. Methods: The prevailing partial differential equations which model the flow with initial and boundary conditions are solved by implicit finite difference method of Crank Nicolson type which is unconditionally stable and convergent. Results: Influence of Grashof number (Gr), nanoparticle volume fraction ( ), heat generation parameter (Q), temperature exponent (m), radiation parameter (N) and time (t) on velocity and temperature profiles are sketched graphically and elaborated comprehensively. Conclusion: Analysis of Nusselt number and Skin friction coefficient are also discussed numerically for both single wall carbon nanotubes (SWCNTs) and multi wall carbon nanotubes (MWCNTs).


2016 ◽  
Vol 23 (06) ◽  
pp. 1650059 ◽  
Author(s):  
RUIZHUO OUYANG ◽  
WEIWEI LI ◽  
YANG YANG ◽  
WANGYAO ZHANG ◽  
KAI FENG ◽  
...  

We presented here three carbon-nanomaterials-based modified glassy carbon electrodes (GCE) with Ni–Ag nanohybrid nanoparticles (NPs) deposited upon, including single-wall carbon nanotubes (SWCNTs), multi-wall carbon nanotubes (MWCNTs) and the mesoporous carbons (MPCs), and compared their morphology effects on both Ni–Ag deposition quality and electrocatalytic performances toward Glu oxidation. After being deposited with Ni–Ag NPs, a homogenous surface with very small Ni–Ag NPs was obtained for Ni–Ag/SWCNTs/GCE, while heterogeneous, coarse surfaces with obvious embedment with large Ni–Ag particles were observed for both Ni–Ag/MWCNTs/GCE and Ni–Ag/MPC/GCE. All three modified electrodes were well characterized in terms of surface morphology, electron transfer rate, hydrophilicity, interference resistance, stability, electrocatalytic behaviors as well as practicability in real samples, based on which Ni–Ag/SWCNTs/GCE was always proved to be more advantageous over other two composite electrodes. Such advantage of Ni–Ag/SWCNTs/GCE was attributed to its desirable surface morphology good for Ni–Ag deposition and exposure of as many active sites as possible to Glu oxidation, leading to the extraordinary electrocatalytic performance.


Sign in / Sign up

Export Citation Format

Share Document