scholarly journals Absorption of Light in Finite Semiconductor Nanowire Arrays and the Effect of Missing Nanowires

Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1654
Author(s):  
Nicklas Anttu

When modelling the absorption in semiconductor nanowire (NW) arrays for solar cell and photodetector applications, the array is typically assumed to be infinitely periodic such that a single unit cell suffices for the simulations. However, any actual array is of a finite extent and might also show varying types of localized defects such as missing or electrically non-contacted individual NWs. Here, we study InP NWs of 2000 nm in length and 180 nm in diameter, placed in a square array of 400 nm in period, giving a rather optimized absorption of sunlight. We show that the absorption in the center NW of a finite N × N array converges already at N = 5 close to the value found for the corresponding infinite array. Furthermore, we show that a missing NW causes an enhanced absorption in neighboring nanowires, which compensates for 77% of the absorption loss due to the missing NW. In other words, an electrically non-contacted NW, which absorbs light but cannot contribute to the external short-circuit current, is a four times worse defect than a missing NW.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Linlin Zhou ◽  
Laipan Zhu ◽  
Tao Yang ◽  
Xinmei Hou ◽  
Zhengtao Du ◽  
...  

AbstractUltra-stable piezoelectric nanogenerator (PENG) driven by environmental actuation sources with all-weather service capability is highly desirable. Here, the PENG based on N doped 4H-SiC nanohole arrays (NHAs) is proposed to harvest ambient energy under low/high temperature and relative humidity (RH) conditions. Finite element method simulation of N doped 4H-SiC NHAs in compression mode is developed to evaluate the relationship between nanohole diameter and piezoelectric performance. The density of short circuit current of the assembled PENG reaches 313 nA cm−2, which is 1.57 times the output of PENG based on N doped 4H-SiC nanowire arrays. The enhancement can be attributed to the existence of nanohole sidewalls in NHAs. All-weather service capability of the PENG is verified after being treated at -80/80 ℃ and 0%/100% RH for 50 days. The PENG is promising to be widely used in practice worldwide to harvest biomechanical energy and mechanical energy.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Ashish Kumar Singh ◽  
Jahnvi Tiwari ◽  
Ashish Yadav ◽  
Rakesh Kumar Jha

Sunlight is the largest source of carbon-neutral energy. Large amount of energy, about 4.3 × 1020 J/hr (Lewis, 2005), is radiated because of nuclear fusion reaction by sun, but it is unfortunate that it is not exploited to its maximum level. Various photovoltaic researches are ongoing to find low cost, and highly efficient solar cell to fulfil looming energy crisis around the globe. Thin film solar cell along with enhanced absorption property will be the best, so combination of SiGe alloy is considered. The paper presented here consists of a numerical model ofSi/Si1-xGexheterostructure solar cell. The research has investigated characteristics such as short circuit current density (Jsc), generation rate (G), absorption coefficient (α), and open circuit voltage (Voc) with optimal Ge concentration. The addition of Ge content to Si layer will affect the property of material and can be calculated with the use of Vegard’s law. Due to this, short circuit current density increases.


2013 ◽  
Vol 133 (1) ◽  
pp. 37-44
Author(s):  
Suresh Chand Verma ◽  
Yoshiki Nakachi ◽  
Yoshihiko Wazawa ◽  
Yoko Kosaka ◽  
Takenori Kobayashi ◽  
...  

2017 ◽  
pp. 34-41
Author(s):  
Andrei V. MAIOROV ◽  
◽  
Kirill A. OSINTSEV ◽  
Andrei V. SHUNTOV ◽  
◽  
...  

2020 ◽  
Vol 16 (4) ◽  
pp. 556-567
Author(s):  
Asma Khalil ◽  
Zubair Ahmad ◽  
Farid Touati ◽  
Mohamed Masmoudi

Background: The photo-absorption and light trapping through the different layers of the organic solar cell structures are a growing concern now-a-days as it affects dramatically the overall efficiency of the cells. In fact, selecting the right material combination is a key factor in increasing the efficiency in the layers. In addition to good absorption properties, insertion of nanostructures has been proved in recent researches to affect significantly the light trapping inside the organic solar cell. All these factors are determined to expand the absorption spectrum and tailor it to a wider spectrum. Objective: The purpose of this investigation is to explore the consequence of the incorporation of the Ag nanostructures, with different sizes and structures, on the photo absorption of the organic BHJ thin films. Methods: Through a three-dimensional Maxwell solver software, Lumerical FDTD, a simulation and comparison of the optical absorption of the three famous organic materials blends poly(3- hexylthiophene): phenyl C71 butyric acid methyl ester (P3HT:PCBM), poly[N-9″-heptadecanyl-2,7- carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)]: phenyl C71 butyric acid methyl ester (PCDTBT:PCBM) and poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt- 4,7-(2,1,3-benzothiadiazole)]: phenyl C71 butyric acid methyl ester (PCDPDTBT:PCBM) has been conducted. Furthermore, FDTD simulation study of the incorporation of nanoparticles structures with different sizes, in different locations and concentrations through a bulk heterojunction organic solar cell structure has also been performed. Results: It has been demonstrated that embedding nanostructures in different locations of the cell, specifically in the active layer and the hole transporting layer had a considerable effect of widening the absorption spectrum and increasing the short circuit current. The effect of incorporation the nanostructures in the active layer has been proved to be greater than in the HTL. Furthermore, the comparison results showed that, PCDTBT:PCBM is no more advantageous over P3HT:PCBM and PCPDTBT:PCBM, and P3HT:PCBM took the lead and showed better performance in terms of absorption spectrum and short circuit current value. Conclusion: This work revealed the significant effect of size, location and concentration of the Ag nanostructures while incorporated in the organic solar cell. In fact, embedding nanostructures in the solar cell widen the absorption spectrum and increases the short circuit current, this result has been proven to be significant only when the nanostructures are inserted in the active layer following specific dimensions and structures.


2020 ◽  
Vol 89 (3) ◽  
pp. 30201 ◽  
Author(s):  
Xi Guan ◽  
Shiyu Wang ◽  
Wenxing Liu ◽  
Dashan Qin ◽  
Dayan Ban

Organic solar cells based on planar copper phthalocyanine (CuPc)/C60 heterojunction have been characterized, in which a 2 nm-thick layer of bathocuproine (BCP) is inserted into the CuPc layer. The thin layer of BCP allows hole current to tunnel it through but blocks the exciton diffusion, thereby altering the steady-state exciton profile in the CuPc zone (zone 1) sandwiched between BCP and C60. The short-circuit current density (JSC) of device is limited by the hole-exciton scattering effect at the BCP/CuPc (zone 1) interface. Based on the variation of JSC with the width of zone 1, the exciton diffusion length of CuPc is deduced to be 12.5–15 nm. The current research provides an easy and helpful method to determine the exciton diffusion lengths of organic electron donors.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5986
Author(s):  
Tao Chen ◽  
Hao Guo ◽  
Leiming Yu ◽  
Tao Sun ◽  
Anran Chen ◽  
...  

Si/PEDOT: PSS solar cell is an optional photovoltaic device owing to its promising high photovoltaic conversion efficiency (PCE) and economic manufacture process. In this work, dopamine@graphene was firstly introduced between the silicon substrate and PEDOT:PSS film for Si/PEDOT: PSS solar cell. The dopamine@graphene was proved to be effective in improving the PCE, and the influence of mechanical properties of dopamine@graphene on solar cell performance was revealed. When dopamine@graphene was incorporated into the cell preparation, the antireflection ability of the cell was enhanced within the wavelength range of 300~450 and 650~1100 nm. The enhanced antireflection ability would benefit amount of the photon-generated carriers. The electrochemical impedance spectra test revealed that the introduction of dopamine@graphene could facilitate the separation of carriers and improve the junction quality. Thus, the short-circuit current density and fill factor were both promoted, which led to the improved PCE. Meanwhile, the influence of graphene concentration on device performances was also investigated. The photovoltaic conversion efficiency would be promoted from 11.06% to 13.15% when dopamine@graphene solution with concentration 1.5 mg/mL was applied. The achievements of this study showed that the dopamine@graphene composites could be an useful materials for high-performance Si/PEDOT:PSS solar cells.


1991 ◽  
Vol 261 (2) ◽  
pp. L188-L194 ◽  
Author(s):  
P. I. Plews ◽  
Z. A. Abdel-Malek ◽  
C. A. Doupnik ◽  
G. D. Leikauf

The endothelins (ET) are a group of isopeptides produced by a number of cells, including canine tracheal epithelial cells. Because these compounds are endogenous peptides that may activate eicosanoid metabolism, we investigated the effects of ET on Cl secretion in canine tracheal epithelium. Endothelin 1 (ET-1) was found to produce a dose-dependent change in short-circuit current (Isc) that increased slowly and reached a maximal value within 10-15 min. When isopeptides of ET were compared, 300 nM ET-1 and ET-2 produced comparable maximal increases in Isc, whereas ET-3 produced smaller changes in Isc (half-maximal concentrations of 2.2, 7.2, and 10.4 nM, respectively). Ionic substitution of Cl with nontransported anions, iodide and gluconate, reduced ET-1-induced changes in Isc. Furthermore, the response was inhibited by the NaCl cotransport inhibitor, furosemide. In paired tissues, ET-1 significantly increased mucosal net 36Cl flux without significant effect on 22Na flux. The increase in Isc induced by ET was diminished by pretreatment with indomethacin. The second messengers mediating the increase in Isc were investigated in cultured canine tracheal epithelial cells. ET-1 stimulated the release of [3H]arachidonate from membrane phospholipids, increased intracellular Ca2+ (occasionally producing oscillations), and increased adenosine 3',5'-cyclic monophosphate accumulation. The latter was diminished by indomethacin. Thus ET is a potent agonist of Cl secretion (with the isopeptides having the following potency: ET-1 greater than or equal to ET-2 greater than ET-3) and acts, in part, through a cyclooxygenase-dependent mechanism.


Sign in / Sign up

Export Citation Format

Share Document