scholarly journals Trajectory Tracking Control for Underactuated USV with Prescribed Performance and Input Quantization

Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2208
Author(s):  
Kunyi Jiang ◽  
Lei Mao ◽  
Yumin Su ◽  
Yuxin Zheng

This paper is devoted to the problem of prescribed performance trajectory tracking control for symmetrical underactuated unmanned surface vessels (USVs) in the presence of model uncertainties and input quantization. By combining backstepping filter mechanisms and adaptive algorithms, two robust control architectures are investigated for surge motion and yaw motion. To guarantee the prespecified performance requirements for position tracking control, the constrained error dynamics are transformed to unconstrained ones by virtue of a tangent-type nonlinear mapping function. On the other hand, the inaccurate model can be identified through radial basis neural networks (RBFNNs), where the minimum learning parameter (MLP) algorithm is employed with a low computational complexity. Furthermore, quantization errors can be effectively reduced even when the parameters of the quantizer remain unavailable to designers. Finally, the effectiveness of the proposed controllers is verified via theoretical analyses and numerical simulations.

Author(s):  
Yuanhui Wang ◽  
Haibin Wang ◽  
Mingyu Fu

This paper investigates concentrates on the trajectory tracking control problem of dynamic positioning (DP) ship, in the presence of the time-varying disturbance and input saturation. Firstly, a simplified mathematical model of three degrees of freedom is established. According to the characteristics of the DP ship, an adaptive backstepping controller which combine the prescribed performance function with disturbance observer is proposed. The control scheme can guarantee the transient and steady state performance of the trajectory tracking and meet the prescribed performance criteria. In addition, an auxiliary dynamic system is introduced into the controller to deal with the input saturation problem of the actuator, so that the DP ship can accomplish the task of trajectory tracking under the condition of actuator constraint. Subsequently, in combination of barrier Lyapunov function (BLF), it is proved that the DP system can stabilize and converge rapidly to the small neighborhood of the equilibrium point, which can achieve the prescribed performance. Finally, the effectiveness of the DP control law is demonstrated by a series of simulation experiments.


2020 ◽  
Vol 26 (15-16) ◽  
pp. 1286-1296 ◽  
Author(s):  
Karl L Fetzer ◽  
Sergey Nersesov ◽  
Hashem Ashrafiuon

This article presents the development, implementation, and comparison of two trajectory tracking nonlinear controllers for underactuated surface vessels. A control approach capable of stabilizing all the states of any planar vehicle is specifically adapted to surface vessels. The method relies on transformation of the six position and velocity state dynamics into a four-state error dynamics. The backstepping and sliding mode control laws are then derived for stabilization of the error dynamics and proven to stabilize all system states. Simulations are presented in the absence and presence of modeling uncertainties and unknown disturbances. An experimental setup is then described, followed by successful experimental implementation and comparison of the two controllers.


Sign in / Sign up

Export Citation Format

Share Document