scholarly journals Compensatory Ground Reaction Forces during Scoliotic Gait in Subjects with and without Right Adolescent Idiopathic Scoliosis

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2372
Author(s):  
Paul S. Sung ◽  
Moon Soo Park

Although the asymmetries of scoliotic gait in adolescent idiopathic scoliosis (AIS) groups have been extensively studied, recent studies indicated conflicting results regarding the ground reaction forces (GRFs) during gait in subjects with spinal deformity. The asymmetry during the stance phase might be clarified with three-dimensional (3D) compensations of GRFs between similar characteristics of subjects with and without AIS. The purpose of this study was to compare the normalized 3D GRF differences during the stance phase of gait while considering age, BMI, and Cobb angle between subjects with and without right AIS. There were 23 subjects with right convexity of thoracic idiopathic scoliosis and 22 age- and gender-matched control subjects. All subjects were right upper/lower limb dominant, and the outcome measures included the Cobb angles, normalized GRF, and KAI. The mediolateral (M/L) third peak force on the dominant limb decreased in the AIS group (t = 2.58, p = 0.01). Both groups demonstrated a significant interaction with the 3D indices (F = 5.41, p = 0.02). The post-hoc analysis identified that the M/L plane of asymmetry was significantly different between groups. The Cobb angles were negatively correlated with the vertical asymmetry index (r = −0.45, p = 0.03); however, there was no significant correlation with age (r = −0.10, p = 0.65) or body mass index (r = −0.28, p = 0.20). The AIS group demonstrated decreased GRF in the dominant limb M/L plane of the terminal stance phase. This compensatory motion was confirmed by a significant group difference on the M/L plane of the KAI. This KAI of vertical asymmetry correlated negatively with the Cobb angle. The asymmetric load transmission with compensatory vertical reactions was evident due to abnormal loading in the stance phase. These kinetic compensatory patterns need to be considered with asymmetry on the dominant limb when developing rehabilitation strategies for patients with AIS.

2021 ◽  
Author(s):  
yonggang wang ◽  
Dongmin Wang ◽  
Xuewen Kang ◽  
Zhanjun Ma ◽  
Yingping Ma ◽  
...  

Abstract Background: Scoliosis can cause deformities of the rib cage. The three-dimensional (3D) shape of the rib-vertebral-sternal complex matches that of the thoracic cavity and is visualized as an elastic structural model that is approximately cubic in shape. This study was performed to evaluate the changes in thoracic torsion by measuring radiological parameters.Methods: Forty-four patients with adolescent idiopathic scoliosis (AIS) with a main right thoracic curvature underwent posterior spinal fusion (PSF), and radiological parameters of the spine and thorax were evaluated. Results: The correction of preoperative, immediately postoperative, and 2-year postoperative MT-Cobb angles were 64% and 66%. The correction of T1–T12 heights were 10% and 12%. The correction of RVAD was 59% immediately postoperatively and 52% at 2 year postoperatively. The correction of RH was 59% immediately postoperatively and 52% at 2 year postoperatively. The correction of AVB-R was 23% immediately postoperatively and 25% at 2 year postoperatively. From the above results, all radiological parameters were significantly different immediately and at 2 year postoperatively compared to preoperatively (p < 0.001). There were significant correlations between MT-Cobb angle and T1–T12 height (p < 0.001), RVAD (p < 0.001), RH (p < 0.001), and AVB-R (p < 0.001).Conclusion: Most cases of mild and moderate scoliosis surgery also includes the correction of thoracic torsion. PSF appears to be effective at correcting scoliosis, and the correction of thoracic torsion also plays an important role.


1995 ◽  
Vol 16 (12) ◽  
pp. 764-770 ◽  
Author(s):  
Karen Lohmann Siegel ◽  
Thomas M. Kepple ◽  
Paul G. O'Connell ◽  
Lynn H. Gerber ◽  
Steven J. Stanhope

A technique to measure foot function during the stance phase of gait is described. Advantages of the method include its three-dimensional approach with anatomically based segment coordinate systems. This allows variables such as ground reaction forces and center of pressure location to be expressed in a local foot coordinate system, which gives more anatomical meaning to the interpretation of results. Application of the measurement technique to case examples of patients with rheumatoid arthritis demonstrated its ability to discriminate normal from various levels of pathological function. Future studies will utilize this technique to study the impact of pathology and treatment on foot function.


BMJ Open ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. e038373
Author(s):  
Youyu Zhang ◽  
Junyang Liang ◽  
Nanfang Xu ◽  
Lin Zeng ◽  
Chaojun Du ◽  
...  

IntroductionAdolescent idiopathic scoliosis (AIS) is a three-dimensional deformity of the spine. Brace treatment is effective for eligible patients with AIS and the effectiveness is significantly correlated with the average brace-wear time per day. Three-dimensional (3D) printing technology is a recent advancement that offers unique opportunities for biomedical applications, and customisation of scoliosis braces might lead to greater patient satisfaction and improved compliance. We present here the design of a randomised controlled trial on the clinical effectiveness of 3D-printed braces versus thoracolumbosacral orthoses (TLSO) for patients with AIS.Methods and analysisPatients with AIS (age 10–16 years) with Risser sign 0-II, Cobb angle of main curve of 20°−40°, premenarchal or no more than 1-year postmenarchal (for women), and no history of treatment are eligible, unless they are unable to tolerate the treatment or refuse participation. A total of 88 patients will be randomised into either the 3D group or TLSO group on a 1:1 basis. Participants in the 3D group will choose between a 3D-printed brace and TLSO, according to the Zelen’s design of the trial. Primary outcome measures will include the average brace-wear time per day, health-related quality of life and Cobb angle progression of the primary curve. Secondary outcome measures will include immediate in-brace correction of Cobb angle of the primary curve, rate of conversion to surgery and incidence of any adverse events. This study is designed as a single-centre, two-arm, superiority and open-label randomised controlled trial. The sample size is calculated with reference to the preliminary study and based on the sample size calculation formula.Ethics and disseminationThis study was approved by the Peking University Third Hospital Medicine Science Research Ethics Committee (No: 2019-017-02). Results of the trial will be submitted for publication in a peer-reviewed journal and as conference presentations.Trial registration numberChiCTR1900027379, pre-results.


2019 ◽  
Vol 31 (6) ◽  
pp. 857-864 ◽  
Author(s):  
Hiroki Oba ◽  
Jun Takahashi ◽  
Sho Kobayashi ◽  
Tetsuro Ohba ◽  
Shota Ikegami ◽  
...  

OBJECTIVEUnfused main thoracic (MT) curvatures occasionally increase after selective thoracolumbar/lumbar (TL/L) fusion. This study sought to identify the predictors of an unacceptable increase in MT curve (UIMT) after selective posterior fusion (SPF) of the TL/L curve in patients with Lenke type 5C adolescent idiopathic scoliosis (AIS).METHODSForty-eight consecutive patients (44 females and 4 males, mean age 15.7 ± 2.5 years, range 13–24 years) with Lenke type 5C AIS who underwent SPF of the TL/L curve were analyzed. The novel “Shinshu line” (S-line) was defined as a line connecting the centers of the concave-side pedicles of the upper instrumented vertebra (UIV) and lowest instrumented vertebra (LIV) on preoperative radiographs. The authors established an S-line tilt to the right as S-line positive (S-line+, i.e., the UIV being to the right of the LIV) and compared S-line+ and S-line− groups for thoracic apical vertebral translation (T-AVT) and MT Cobb angle preoperatively, early postoperatively, and at final follow-up. The predictors for T-AVT > 20 mm at final follow-up were evaluated as well. T-AVT > 20 mm was defined as a UIMT.RESULTSAmong the 48 consecutively treated patients, 26 were S-line+ and 22 were S-line−. At preoperative, early postoperative, and final follow-up a minimum of 2 years later, the mean T-AVT was 12.8 mm (range −9.3 to 32.8 mm), 19.6 mm (range −13.0 to 41.0 mm), and 22.8 mm (range −1.9 to 68.7 mm) in the S-line+ group, and 10.8 mm (range −5.1 to 27.3 mm), 16.2 mm (range −11.7 to 42.1 mm), and 11.0 mm (range −6.3 to 26.9 mm) in the S-line− group, respectively. T-AVT in S-line+ patients was significantly larger than that in S-line− patients at the final follow-up. Multivariate analysis revealed S-line+ (odds ratio [OR] 23.8, p = 0.003) and preoperative MT Cobb angle (OR 7.9, p = 0.001) to be predictors of a UIMT.CONCLUSIONSS-line+ was defined as the UIV being to the right of the LIV. T-AVT in the S-line+ group was significantly larger than in the S-line− group at the final follow-up. S-line+ status and larger preoperative MT Cobb angle were independent predictors of a UIMT after SPF for the TL/L curve in patients with Lenke type 5C AIS. Surgeons should consider changing the UIV and/or LIV in patients exhibiting S-line+ during preoperative planning to avoid a possible increase in MT curve and revision surgery.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Laura Scaramuzzo ◽  
Antonino Zagra ◽  
Giuseppe Barone ◽  
Stefano Muzzi ◽  
Leone Minoia ◽  
...  

AbstractAim of the study was to evaluate sagittal parameters modifications, with particular interest in thoracic kyphosis, in patients affected by adolescent idiopathic scoliosis (AIS) comparing hybrid and all-screws technique. From June 2010 to September 2018, 145 patients were enrolled. Evaluation included: Lenke classification, Risser scale, coronal Cobb angle, thoracic kyphosis (TK), lumbar lordosis (LL), sagittal vertical axis (SVA), pelvic incidence (PI), pelvic tilt (PT), sacral slope (SS). Patients were divided in two groups (1 all-screws and 2 hybrid); a further division, in both groups, was done considering preoperative TK values. Descriptive and inferential statistical analysis was conducted. 99 patients were in group 1, 46 in group 2 (mean follow-up 3.7 years). Patients with a normo-kyphotic profile developed a little variation in TK (Δ pre–post = 2.4° versus − 2.0° respectively). Hyper-kyphotic subgroups had a tendency of restoring a good sagittal alignment. Hypo-kyphotic subgroups, patients treated with all-screw implants developed a higher increase in TK mean Cobb angle (Δ pre–post = 10°) than the hybrid subgroup (Δ pre–post = 5.4°) (p = 0.01). All-screws group showed better results in restoring sagittal alignment in all subgroups compared to hybrid groups, especially in hypo-TK subgroup, with the important advantage to give better correction on coronal plane.


Author(s):  
Kadir Gem ◽  
Sertan Hancioglu ◽  
Abdulkadir Bilgiç ◽  
Serkan Erkan

Abstract Introduction The purpose of this study was to evaluate the relationship between the correction rate in Cobb angle and the improvement in quality of life profile in terms of Scoliosis Research Society (SRS)-22 values. Patients and Methods Between January 2007 and December 2013, posterior instrumentation and fusion was performed to 30 patients with adolescent idiopathic scoliosis (AIS). Patients were grouped according to their improvement rate in Cobb angles after surgery. Patients with an improvement rate of > 80% were grouped as Group A; those with an improvement rate of > 60% and ≤ 80% as Group B and those with an improvement rate of ≤ 60% were grouped as Group C. The SRS-22 questionnaire of these three groups was calculated and their relationship with the improvement in Cobb angle was evaluated. Results No statistical difference was found among the three groups in terms of pain, appearance, function, spirit, satisfaction, and SRS-22 values (all p > 0.05). Conclusion The results of this study demonstrate that the degree of correction rate does not correlate with the degree of improvement in the SRS-22 questionnaire in patients with AIS that underwent posterior fusion and instrumentation.


Author(s):  
Tom P. C. Schlösser ◽  
René M. Castelein ◽  
Pierre Grobost ◽  
Suken A. Shah ◽  
Kariman Abelin-Genevois

Abstract Purpose The complex three-dimensional spinal deformity in AIS consists of rotated, lordotic apical areas and neutral junctional zones that modify the spine’s sagittal profile. Recently, three specific patterns of thoracic sagittal ‘malalignment’ were described for severe AIS. The aim of this study is to define whether specific patterns of pathological sagittal alignment are already present in mild AIS. Methods Lateral spinal radiographs of 192 mild (10°–20°) and 253 severe (> 45°) AIS patients and 156 controls were derived from an international consortium. Kyphosis characteristics (T4–T12 thoracic kyphosis, T10–L2 angle, C7 slope, location of the apex of kyphosis and of the inflection point) and sagittal curve types according to Abelin-Genevois were systematically compared between the three cohorts. Results Even in mild thoracic AIS, already 49% of the curves presented sagittal malalignment, mostly thoracic hypokyphosis, whereas only 13% of the (thoraco) lumbar curves and 6% of the nonscoliosis adolescents were hypokyphotic. In severe AIS, 63% had a sagittal malalignment. Hypokyphosis + thoracolumbar kyphosis occurred more frequently in high-PI and primary lumbar curves, whereas cervicothoracic kyphosis occurred more in double thoracic curves. Conclusions Pathological sagittal patterns are often already present in curves 10°–20°, whereas those are rare in non-scoliotic adolescents. This suggests that sagittal ‘malalignment’ patterns are an integral part of the early pathogenesis of AIS.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 436 ◽  
Author(s):  
Hilary Mary Clayton ◽  
Sarah Jane Hobbs

The piaffe is an artificial, diagonally coordinated movement performed in the highest levels of dressage competition. The ground reaction forces (GRFs) of horses performing the piaffe do not appear to have been reported. Therefore, the objective of this study was to describe three-dimensional GRFs in ridden dressage horses performing the piaffe. In-ground force plates were used to capture fore and hindlimb GRF data from seven well-trained dressage horses. Peak vertical GRF was significantly higher in forelimbs than in the hindlimbs (7.39 ± 0.99 N/kg vs. 6.41 ± 0.64 N/kg; p < 0.001) with vertical impulse showing a trend toward higher forelimb values. Peak longitudinal forces were small with no difference in the magnitude of braking or propulsive forces between fore and hindlimbs. Peak transverse forces were similar in magnitude to longitudinal forces and were mostly directed medially in the hindlimbs. Both the intra- and inter-individual variability of longitudinal and transverse GRFs were high (coefficient of variation 25–68%). Compared with the other diagonal gaits of dressage horses, the vertical GRF somewhat shifted toward the hindlimbs. The high step-to-step variability of the horizontal GRF components is thought to reflect the challenge of balancing on one diagonal pair of limbs with no forward momentum.


Sign in / Sign up

Export Citation Format

Share Document