scholarly journals A p-Adic Matter in a Closed Universe

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 73
Author(s):  
Branko Dragovich

In this paper, we introduce a new type of matter that has origin in p-adic strings, i.e., strings with a p-adic worldsheet. We investigate some properties of this p-adic matter, in particular its cosmological aspects. We start with crossing symmetric scattering amplitudes for p-adic open strings and related effective nonlocal and nonlinear Lagrangian which describes tachyon dynamics at the tree level. Then, we make a slight modification of this Lagrangian and obtain a new Lagrangian for non-tachyonic scalar field. Using this new Lagrangian in the weak field approximation as a matter in Einstein gravity with the cosmological constant, one obtains an exponentially expanding FLRW closed universe. At the end, we discuss the obtained results, i.e., computed mass of the scalar p-adic particle, estimated radius of related closed universe and noted p-adic matter as a possible candidate for dark matter.

2012 ◽  
Vol 90 (11) ◽  
pp. 1077-1130 ◽  
Author(s):  
David Alba ◽  
Luca Lusanna

In this second paper we define a post-minkowskian (PM) weak field approximation leading to a linearization of the Hamilton equations of Arnowitt–Deser–Misner (ADM) tetrad gravity in the York canonical basis in a family of nonharmonic 3-orthogonal Schwinger time gauges. The York time 3K (the relativistic inertial gauge variable, not existing in newtonian gravity, parametrizing the family, and connected to the freedom in clock synchronization, i.e., to the definition of the the shape of the instantaneous 3-spaces) is set equal to an arbitrary numerical function. The matter are considered point particles, with a Grassmann regularization of self-energies, and the electromagnetic field in the radiation gauge: an ultraviolet cutoff allows a consistent linearization, which is shown to be the lowest order of a hamiltonian PM expansion. We solve the constraints and the Hamilton equations for the tidal variables and we find PM gravitational waves with asymptotic background (and the correct quadrupole emission formula) propagating on dynamically determined non-euclidean 3-spaces. The conserved ADM energy and the Grassmann regularization of self-energies imply the correct energy balance. A generalized transverse–traceless gauge can be identified and the main tools for the detection of gravitational waves are reproduced in these nonharmonic gauges. In conclusion, we get a PM solution for the gravitational field and we identify a class of PM Einstein space–times, which will be studied in more detail in a third paper together with the PM equations of motion for the particles and their post-newtonian expansion (but in the absence of the electromagnetic field). Finally we make a discussion on the gauge problem in general relativity to understand which type of experimental observations may lead to a preferred choice for the inertial gauge variable 3K in PM space–times. In the third paper we will show that this choice is connected with the problem of dark matter.


2011 ◽  
Vol 20 (05) ◽  
pp. 745-756 ◽  
Author(s):  
FRANCISCO DIEGO MAZZITELLI

We discuss the renormalization procedure for quantum scalar fields with modified dispersion relations in curved spacetimes. We consider two different ways of introducing modified dispersion relations: through the interaction with a dynamical temporal vector field, as in the context of the Einstein–Aether theory, and breaking explicitly the covariance of the theory, as in Hǒrava–Lifshitz gravity. Working in the weak field approximation, we show that the general structure of the counterterms depends on the UV behavior of the dispersion relations and on the mechanism chosen to introduce them.


2012 ◽  
Vol 316 (3) ◽  
pp. 595-613 ◽  
Author(s):  
B. Iochum ◽  
C. Levy ◽  
D. Vassilevich

2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
F. F. Faria

We construct a massive theory of gravity that is invariant under conformal transformations. The massive action of the theory depends on the metric tensor and a scalar field, which are considered the only field variables. We find the vacuum field equations of the theory and analyze its weak-field approximation and Newtonian limit.


2018 ◽  
Vol 621 ◽  
pp. A1 ◽  
Author(s):  
Carolina Robustini ◽  
Sara Esteban Pozuelo ◽  
Jorrit Leenaarts ◽  
Jaime de la Cruz Rodríguez

Context.Unipolar magnetic regions are often associated with supergranular cells. The chromosphere above these regions is regulated by the magnetic field, but the field structure is poorly known. In unipolar regions, the fibrillar arrangement does not always coincide with magnetic field lines, and polarimetric observations are needed to establish the chromospheric magnetic topology.Aims.In an active region close to the limb, we observed a unipolar annular network of supergranular size. This supergranular structure harbours a radial distribution of the fibrils converging towards its centre. We aim to improve the description of this structure by determining the magnetic field configuration and the line-of-sight velocity distribution in both the photosphere and the chromosphere.Methods.We observed the supergranular structure at different heights by taking data in the Fe I6301–6302 Å, Hα, Ca II8542 Å, and the Ca IIH&K spectral lines with the CRisp Imaging SpectroPolarimeter (CRISP) and CHROMospheric Imaging Spectrometer (CHROMIS) at the Swedish 1-m Solar Telescope. We performed Milne-Eddington inversions of the spectropolarimetric data of Fe I6301–6302 Å and applied the weak field approximation to Ca II8542 Å data to retrieve the magnetic field in the photosphere and chromosphere. We used photospheric magnetograms of CRISP, Hinode Solar Optical Telescope spectropolarimeter, and Helioseismic and Magnetic Imager to calculate the magnetic flux. We investigated the velocity distribution using the line-of-sight velocities computed from the Milne-Eddington inversion and from the Doppler shift of theK3feature in the Ca IIK spectral line. To describe the typical spectral profiles characterising the chromosphere above the inner region of the supergranular structure, we performed aK-mean clustering of the spectra in Ca IIK.Results.The photospheric magnetic flux shows that the supergranular boundary has an excess of positive polarity and the whole structure is not balanced. The magnetic field vector at chromospheric heights, retrieved by the weak field approximation, indicates that the field lines within the supergranular cell tend to point inwards, and might form a canopy above the unipolar region. In the centre of the supergranular cell hosting the unipolar region, we observe a persistent chromospheric brightening coinciding with a strong gradient in the line-of-sight velocity.


Proceedings ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 6
Author(s):  
Carlos A. Benavides-Gallego ◽  
Ahmadjon-Abdujabbarov Abdujabbarov

In this work, we obtain the deflection angle for a boosted Kerr black hole in the weak field approximation using the optics in a curved spacetime developed by J. L. Synge in 1960. We study the behavior of light in the presence of plasma by considering different distributions: uniform plasma, singular isothermal sphere, non-singular isothermal gas sphere, and plasma in a galaxy cluster. We found that the dragging of the inertial system along with the boosted parameter Λ affect the value of the deflection angle. As an application, we studied the magnification for both uniform and singular isothermal distributions.


Sign in / Sign up

Export Citation Format

Share Document