scholarly journals A Novel Approach for Multiplicative Linguistic Group Decision Making Based on Symmetrical Linguistic Chi-Square Deviation and VIKOR Method

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 136
Author(s):  
Zhiwei Gong ◽  
Jian Lin ◽  
Ling Weng

Most linguistic-based approaches to multi-attribute group decision making (MAGDM) use symmetric, uniformly distributed sets of additive linguistic terms to express the opinions of decision makers. However, in reality, there are also some problems that require the use of asymmetric, uneven, i.e., non-equilibrium, multiplicative linguistic term sets to express the evaluation. The purpose of this paper is to propose a new approach to MAGDM under multiplicative linguistic information. The aggregation of linguistic data is an important component in MAGDM. To solve this problem, we define a chi-square for measuring the difference between multiplicative linguistic term sets. Furthermore, the linguistic generalized weighted logarithm multiple averaging (LGWLMA) operator and linguistic generalized ordered weighted logarithm multiple averaging (LGOWLMA) operator are proposed based on chi-square deviation. On the basis of the proposed two operators, we develop a novel approach to GDM with multiplicative linguistic term sets. Finally, the evaluation of transport logistics enterprises is developed to illustrate the validity and practicality of the proposed approach.

2018 ◽  
Vol 24 (3) ◽  
pp. 1125-1148 ◽  
Author(s):  
Seyed Hossein RAZAVI HAJIAGHA ◽  
Meisam SHAHBAZI ◽  
Hannan AMOOZAD MAHDIRAJI ◽  
Hossein PANAHIAN

Decision makers usually prefer to express their preferences by linguistic variables. Classic fuzzy sets allowed expressing these preferences using a single linguistic value. Considering inevitable hesitancy of decision makers, hesitant fuzzy linguistic term sets allowed them to express individual evaluation using several linguistic values. Therefore, these sets improve the ability of humans to determine believes using their own language. Considering this feature, in this paper a method upon linear assignment method is proposed to solve group decision making problems using this kind of information, when criteria weights are known or unknown. The performance of the proposed method is illustrated in a numerical example and the results are compared with other methods to delineate the models efficiency. Following a logical and well-known mathematical logic along with simplicity of execution are the main advantages of the proposed method.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 640 ◽  
Author(s):  
Xu Libo ◽  
Li Xingsen ◽  
Pang Chaoyi ◽  
Guo Yan

In this paper, a new approach and framework based on the interval dependent degree for multi-criteria group decision-making (MCGDM) problems with simplified neutrosophic sets (SNSs) is proposed. Firstly, the simplified dependent function and distribution function are defined. Then, they are integrated into the interval dependent function which contains interval computing and distribution information of the intervals. Subsequently, the interval transformation operator is defined to convert simplified neutrosophic numbers (SNNs) into intervals, and then the interval dependent function for SNNs is deduced. Finally, an example is provided to verify the feasibility and effectiveness of the proposed method, together with its comparative analysis. In addition, uncertainty analysis, which can reflect the dynamic change of the final result caused by changes in the decision makers’ preferences, is performed in different distribution function situations. That increases the reliability and accuracy of the result.


2017 ◽  
Vol 16 (04) ◽  
pp. 1069-1099 ◽  
Author(s):  
Jing Wang ◽  
Jian-Qiang Wang ◽  
Hong-Yu Zhang ◽  
Xiao-Hong Chen

In this paper, the distance-based multi-criteria group decision-making (MCGDM) approaches using multi-hesitant fuzzy linguistic term sets (MHFLTSs) are proposed. MHFLTSs can contain nonconsecutive and repetitive linguistic terms, so as to deal with repeated linguistic values in group decision-making. A multi-hesitant fuzzy linguistic term element (MHFLTE) can be produced by collecting the evaluation values of several decision-makers or given by one person who has uncertainty in evaluation. The corresponding set operations and comparison rules are defined and the generalized hesitant fuzzy linguistic distance for MHFLTEs is given based on the linguistic scale function. Then this distance is embedded into the TOPSIS, VIKOR and TODIM approaches for the purpose of solving multi-criteria decision-making (MCDM) problems in the context of multi-hesitant fuzzy linguistic information. With increasing concerns about deterioration in environment, organizations are obliged to carry out more environmental sustainable activities than before, such as progressive practices in green supply chain management (GSCM). Therefore, with respect to the application of MHFLTSs in GSCM, two illustrations for evaluating the related alternatives are finally provided, together with the sensitivity and comparison analysis, to show the validity and effectiveness of our proposal.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Min Jiang ◽  
Rui Shen ◽  
Zhiqing Meng

This paper introduces a concession equilibrium solution without weighted aggregation operators to multiattribute group decision-making problems (in short MGDMPs). It is of practical significance for all decision-makers to find an optimal solution to MGDMPs or to sort out all candidate solutions to MGDMPs. It is proved that under certain conditions the optimal concession equilibrium solution does exist, and on this important result the optimal concession equilibrium solution is obtained by solving a single objective optimization problem. Moreover, the optimal concession equilibrium solution is equivalent to the robust optimal solution with the group weight aggregation under the worst weight condition. Finally, it is proved that the concession equilibrium solution is equivalent to a complete order, i.e. all candidate alternatives can be sorted by concession equilibrium solution. By defining the triangular fuzzy numbers of target concession value, the optimal concession equilibrium solution or the order of the alternative solutions can be obtained in the range of objective concession ambiguity. Numerical experiment shows that the solution can balance the evaluations of multiattribute group decision makers. This paper provides a new approach to solving multiattribute group decision-making problems.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1881
Author(s):  
Gholamreza Haseli ◽  
Reza Sheikh ◽  
Jianqiang Wang ◽  
Hana Tomaskova ◽  
Erfan Babaee Babaee Tirkolaee

Due to the complexity of real-world multi-criteria decision-making (MCDM) issues, analyzing different opinions from a group of decision makers needs to ensure appropriate decision making. The group decision-making methods collect preferences of the decision makers and present the best preferences using mathematical equations. The best–worst method (BWM) is one of the recently introduced MCDM methods that requires fewer pairwise comparisons to obtain the criteria weights than the other MCDM methods. In this research, we develop a novel approach to group decision-making problems based on the BWM called G-BWM. This approach helps us to analyze the preferences of decision makers to carry out democratic decision making using the BWM structure. In order to assess the applicability of the proposed methodology and represent its novelty, two numerical examples from the literature with the application to supply chain management (SCM) (i.e., green supplier selection and supplier development/segmentation) are examined and discussed. The results demonstrate the performance of our proposed G-BWM for group decision making in terms of a large number of decision makers, ease of use and achieving democratic decisions in the decision-making process.


Author(s):  
YAN-PING JIANG ◽  
ZHI-PING FAN

In this paper, a new approach is proposed to solve group decision making (GDM) problems where the preference information on alternatives provided by decision makers (DMs) is represented in incomplete fuzzy preference relations. In order to make the collective opinion close each decision maker's opinion as near as possible, an optimization model is constructed to integrate the incomplete fuzzy preference relations and to compute the collective ranking values of alternatives. The ranking of alternatives or selection of the most desirable alternative(s) is directly obtained from the derived collective ranking values. A numerical example is also used to illustrate the applicability of the proposed approach.


2021 ◽  
Vol 40 (1) ◽  
pp. 235-250
Author(s):  
Liuxin Chen ◽  
Nanfang Luo ◽  
Xiaoling Gou

In the real multi-criteria group decision making (MCGDM) problems, there will be an interactive relationship among different decision makers (DMs). To identify the overall influence, we define the Shapley value as the DM’s weight. Entropy is a measure which makes it better than similarity measures to recognize a group decision making problem. Since we propose a relative entropy to measure the difference between two systems, which improves the accuracy of the distance measure.In this paper, a MCGDM approach named as TODIM is presented under q-rung orthopair fuzzy information.The proposed TODIM approach is developed for correlative MCGDM problems, in which the weights of the DMs are calculated in terms of Shapley values and the dominance matrices are evaluated based on relative entropy measure with q-rung orthopair fuzzy information.Furthermore, the efficacy of the proposed Gq-ROFWA operator and the novel TODIM is demonstrated through a selection problem of modern enterprises risk investment. A comparative analysis with existing methods is presented to validate the efficiency of the approach.


2021 ◽  
pp. 1-11
Author(s):  
Huiyuan Zhang ◽  
Guiwu Wei ◽  
Xudong Chen

The green supplier selection is one of the popular multiple attribute group decision making (MAGDM) problems. The spherical fuzzy sets (SFSs) can fully express the complexity and fuzziness of evaluation information for green supplier selection. Furthermore, the classic MABAC (multi-attributive border approximation area comparison) method based on the cumulative prospect theory (CPT-MABAC) is designed, which is an optional method in reflecting the psychological perceptions of decision makers (DMs). Therefore, in this article, we propose a spherical fuzzy CPT-MABAC (SF-CPT-MABAC) method for MAGDM issues. Meanwhile, considering the different preferences of DMs to attribute sets, we obtain the objective weights of attributes through entropy method. Focusing on the current popular problems, this paper applies the proposed method for green supplier selection and proves for green supplier selection based on SF-CPT-MABAC method. Finally, by comparing existing methods, the effectiveness of the proposed method is certified.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Qinrong Feng ◽  
Xiao Guo

There are many uncertain problems in practical life which need decision-making with soft sets and fuzzy soft sets. The purpose of this paper is to develop an approach to effectively solve the group decision-making problem based on fuzzy soft sets. Firstly, we present an adjustable approach to solve the decision-making problems based on fuzzy soft sets. Then, we introduce knowledge measure and divergence degree based on α-similarity relation to determine the experts’ weights. Further, we develop an effective group decision-making approach with unknown experts’ weights. Finally, sensitivity analysis about the parameters and comparison analysis with other existing methods are given.


Sign in / Sign up

Export Citation Format

Share Document