scholarly journals XGB-RF: A Hybrid Machine Learning Approach for IoT Intrusion Detection

Telecom ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 52-69
Author(s):  
Jabed Al Faysal ◽  
Sk Tahmid Mostafa ◽  
Jannatul Sultana Tamanna ◽  
Khondoker Mirazul Mumenin ◽  
Md. Mashrur Arifin ◽  
...  

In the past few years, Internet of Things (IoT) devices have evolved faster and the use of these devices is exceedingly increasing to make our daily activities easier than ever. However, numerous security flaws persist on IoT devices due to the fact that the majority of them lack the memory and computing resources necessary for adequate security operations. As a result, IoT devices are affected by a variety of attacks. A single attack on network systems or devices can lead to significant damages in data security and privacy. However, machine-learning techniques can be applied to detect IoT attacks. In this paper, a hybrid machine learning scheme called XGB-RF is proposed for detecting intrusion attacks. The proposed hybrid method was applied to the N-BaIoT dataset containing hazardous botnet attacks. Random forest (RF) was used for the feature selection and eXtreme Gradient Boosting (XGB) classifier was used to detect different types of attacks on IoT environments. The performance of the proposed XGB-RF scheme is evaluated based on several evaluation metrics and demonstrates that the model successfully detects 99.94% of the attacks. After comparing it with state-of-the-art algorithms, our proposed model has achieved better performance for every metric. As the proposed scheme is capable of detecting botnet attacks effectively, it can significantly contribute to reducing the security concerns associated with IoT systems.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Chalachew Muluken Liyew ◽  
Haileyesus Amsaya Melese

AbstractPredicting the amount of daily rainfall improves agricultural productivity and secures food and water supply to keep citizens healthy. To predict rainfall, several types of research have been conducted using data mining and machine learning techniques of different countries’ environmental datasets. An erratic rainfall distribution in the country affects the agriculture on which the economy of the country depends on. Wise use of rainfall water should be planned and practiced in the country to minimize the problem of the drought and flood occurred in the country. The main objective of this study is to identify the relevant atmospheric features that cause rainfall and predict the intensity of daily rainfall using machine learning techniques. The Pearson correlation technique was used to select relevant environmental variables which were used as an input for the machine learning model. The dataset was collected from the local meteorological office at Bahir Dar City, Ethiopia to measure the performance of three machine learning techniques (Multivariate Linear Regression, Random Forest, and Extreme Gradient Boost). Root mean squared error and Mean absolute Error methods were used to measure the performance of the machine learning model. The result of the study revealed that the Extreme Gradient Boosting machine learning algorithm performed better than others.


Author(s):  
Parthiban Loganathan ◽  
Amit Baburao Mahindrakar

Abstract The intercomparison of streamflow simulation and the prediction of discharge using various renowned machine learning techniques were performed. The daily streamflow discharge model was developed for 35 observation stations located in a large-scale river basin named Cauvery. Various hydrological indices were calculated for observed and predicted discharges for comparing and evaluating the replicability of local hydrological conditions. The model variance and bias observed from the proposed extreme gradient boosting decision tree model were less than 15%, which is compared with other machine learning techniques considered in this study. The model Nash–Sutcliffe efficiency and coefficient of determination values are above 0.7 for both the training and testing phases which demonstrate the effectiveness of model performance. The comparison of monthly observed and model-predicted discharges during the validation period illustrates the model's ability in representing the peaks and fall in high-, medium-, and low-flow zones. The assessment and comparison of hydrological indices between observed and predicted discharges illustrate the model's ability in representing the baseflow, high-spell, and low-spell statistics. Simulating streamflow and predicting discharge are essential for water resource planning and management, especially in large-scale river basins. The proposed machine learning technique demonstrates significant improvement in model efficiency by dropping variance and bias which, in turn, improves the replicability of local-scale hydrology.


2022 ◽  
Vol 15 (1) ◽  
pp. 35
Author(s):  
Shekar Shetty ◽  
Mohamed Musa ◽  
Xavier Brédart

In this study, we apply several advanced machine learning techniques including extreme gradient boosting (XGBoost), support vector machine (SVM), and a deep neural network to predict bankruptcy using easily obtainable financial data of 3728 Belgian Small and Medium Enterprises (SME’s) during the period 2002–2012. Using the above-mentioned machine learning techniques, we predict bankruptcies with a global accuracy of 82–83% using only three easily obtainable financial ratios: the return on assets, the current ratio, and the solvency ratio. While the prediction accuracy is similar to several previous models in the literature, our model is very simple to implement and represents an accurate and user-friendly tool to discriminate between bankrupt and non-bankrupt firms.


Information ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 514
Author(s):  
Fahad Rahman Amik ◽  
Akash Lanard ◽  
Ahnaf Ismat ◽  
Sifat Momen

Pre-owned cars (i.e., cars with one or more previous retail owners) are extremely popular in Bangladesh. Customers who plan to purchase a pre-owned car often struggle to find a car within a budget as well as to predict the price of a particular pre-owned car. Currently, Bangladesh lacks online services that can provide assistance to customers purchasing pre-owned cars. A good prediction of prices of pre-owned cars can help customers greatly in making an informed decision about buying a pre-owned car. In this article, we look into this problem and develop a forecasting system (using machine learning techniques) that helps a potential buyer to estimate the price of a pre-owned car he is interested in. A dataset is collected and pre-processed. Exploratory data analysis has been performed. Following that, various machine learning regression algorithms, including linear regression, LASSO (Least Absolute Shrinkage and Selection Operator) regression, decision tree, random forest, and extreme gradient boosting have been applied. After evaluating the performance of each method, the best-performing model (XGBoost) was chosen. This model is capable of properly predicting prices more than 91% of the time. Finally, the model has been deployed as a web application in a local machine so that this can be later made available to end users.


Author(s):  
Shihang Wang ◽  
Zongmin Li ◽  
Yuhong Wang ◽  
Qi Zhang

This research provides a general methodology for distinguishing disaster-related anti-rumor spreaders from a non-ignorant population base, with strong connections in their social circle. Several important influencing factors are examined and illustrated. User information from the most recent posted microblog content of 3793 Sina Weibo users was collected. Natural language processing (NLP) was used for the sentiment and short text similarity analyses, and four machine learning techniques, i.e., logistic regression (LR), support vector machines (SVM), random forest (RF), and extreme gradient boosting (XGBoost) were compared on different rumor refuting microblogs; after which a valid and robust distinguishing XGBoost model was trained and validated to predict who would retweet disaster-related rumor refuting microblogs. Compared with traditional prediction variables that only access user information, the similarity and sentiment analyses of the most recent user microblog contents were found to significantly improve prediction precision and robustness. The number of user microblogs also proved to be a valuable reference for all samples during the prediction process. This prediction methodology could be possibly more useful for WeChat or Facebook as these have relatively stable closed-loop communication channels, which means that rumors are more likely to be refuted by acquaintances. Therefore, the methodology is going to be further optimized and validated on WeChat-like channels in the future. The novel rumor refuting approach presented in this research harnessed NLP for the user microblog content analysis and then used the analysis results of NLP as additional prediction variables to identify the anti-rumor spreaders. Therefore, compared to previous studies, this study presents a new and effective decision support for rumor countermeasures.


2020 ◽  
Vol 10 (16) ◽  
pp. 5628 ◽  
Author(s):  
Kangjae Lee ◽  
Alexis Richard C. Claridades ◽  
Jiyeong Lee

Address matching is a crucial step in geocoding; however, this step forms a bottleneck for geocoding accuracy, as precise input is the biggest challenge for establishing perfect matches. Matches still have to be established despite the inevitability of incorrect address inputs such as misspellings, abbreviations, informal and non-standard names, slangs, or coded terms. Thus, this study suggests an address geocoding system using machine learning to enhance the address matching implemented on street-based addresses. Three different kinds of machine learning methods are tested to find the best method showing the highest accuracy. The performance of address matching using machine learning models is compared to multiple text similarity metrics, which are generally used for the word matching. It was proved that extreme gradient boosting with the optimal hyper-parameters was the best machine learning method with the highest accuracy in the address matching process, and the accuracy of extreme gradient boosting outperformed similarity metrics when using training data or input data. The address matching process using machine learning achieved high accuracy and can be applied to any geocoding systems to precisely convert addresses into geographic coordinates for various research and applications, including car navigation.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Moojung Kim ◽  
Young Jae Kim ◽  
Sung Jin Park ◽  
Kwang Gi Kim ◽  
Pyung Chun Oh ◽  
...  

Abstract Background Annual influenza vaccination is an important public health measure to prevent influenza infections and is strongly recommended for cardiovascular disease (CVD) patients, especially in the current coronavirus disease 2019 (COVID-19) pandemic. The aim of this study is to develop a machine learning model to identify Korean adult CVD patients with low adherence to influenza vaccination Methods Adults with CVD (n = 815) from a nationally representative dataset of the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V) were analyzed. Among these adults, 500 (61.4%) had answered "yes" to whether they had received seasonal influenza vaccinations in the past 12 months. The classification process was performed using the logistic regression (LR), random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGB) machine learning techniques. Because the Ministry of Health and Welfare in Korea offers free influenza immunization for the elderly, separate models were developed for the < 65 and ≥ 65 age groups. Results The accuracy of machine learning models using 16 variables as predictors of low influenza vaccination adherence was compared; for the ≥ 65 age group, XGB (84.7%) and RF (84.7%) have the best accuracies, followed by LR (82.7%) and SVM (77.6%). For the < 65 age group, SVM has the best accuracy (68.4%), followed by RF (64.9%), LR (63.2%), and XGB (61.4%). Conclusions The machine leaning models show comparable performance in classifying adult CVD patients with low adherence to influenza vaccination.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1089
Author(s):  
Sung-Hee Kim ◽  
Chanyoung Jeong

This study aims to demonstrate the feasibility of applying eight machine learning algorithms to predict the classification of the surface characteristics of titanium oxide (TiO2) nanostructures with different anodization processes. We produced a total of 100 samples, and we assessed changes in TiO2 nanostructures’ thicknesses by performing anodization. We successfully grew TiO2 films with different thicknesses by one-step anodization in ethylene glycol containing NH4F and H2O at applied voltage differences ranging from 10 V to 100 V at various anodization durations. We found that the thicknesses of TiO2 nanostructures are dependent on anodization voltages under time differences. Therefore, we tested the feasibility of applying machine learning algorithms to predict the deformation of TiO2. As the characteristics of TiO2 changed based on the different experimental conditions, we classified its surface pore structure into two categories and four groups. For the classification based on granularity, we assessed layer creation, roughness, pore creation, and pore height. We applied eight machine learning techniques to predict classification for binary and multiclass classification. For binary classification, random forest and gradient boosting algorithm had relatively high performance. However, all eight algorithms had scores higher than 0.93, which signifies high prediction on estimating the presence of pore. In contrast, decision tree and three ensemble methods had a relatively higher performance for multiclass classification, with an accuracy rate greater than 0.79. The weakest algorithm used was k-nearest neighbors for both binary and multiclass classifications. We believe that these results show that we can apply machine learning techniques to predict surface quality improvement, leading to smart manufacturing technology to better control color appearance, super-hydrophobicity, super-hydrophilicity or batter efficiency.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Tahani Daghistani ◽  
Huda AlGhamdi ◽  
Riyad Alshammari ◽  
Raed H. AlHazme

AbstractOutpatients who fail to attend their appointments have a negative impact on the healthcare outcome. Thus, healthcare organizations facing new opportunities, one of them is to improve the quality of healthcare. The main challenges is predictive analysis using techniques capable of handle the huge data generated. We propose a big data framework for identifying subject outpatients’ no-show via feature engineering and machine learning (MLlib) in the Spark platform. This study evaluates the performance of five machine learning techniques, using the (2,011,813‬) outpatients’ visits data. Conducting several experiments and using different validation methods, the Gradient Boosting (GB) performed best, resulting in an increase of accuracy and ROC to 79% and 81%, respectively. In addition, we showed that exploring and evaluating the performance of the machine learning models using various evaluation methods is critical as the accuracy of prediction can significantly differ. The aim of this paper is exploring factors that affect no-show rate and can be used to formulate predictions using big data machine learning techniques.


Sign in / Sign up

Export Citation Format

Share Document