scholarly journals Machine learning models to identify low adherence to influenza vaccination among Korean adults with cardiovascular disease

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Moojung Kim ◽  
Young Jae Kim ◽  
Sung Jin Park ◽  
Kwang Gi Kim ◽  
Pyung Chun Oh ◽  
...  

Abstract Background Annual influenza vaccination is an important public health measure to prevent influenza infections and is strongly recommended for cardiovascular disease (CVD) patients, especially in the current coronavirus disease 2019 (COVID-19) pandemic. The aim of this study is to develop a machine learning model to identify Korean adult CVD patients with low adherence to influenza vaccination Methods Adults with CVD (n = 815) from a nationally representative dataset of the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V) were analyzed. Among these adults, 500 (61.4%) had answered "yes" to whether they had received seasonal influenza vaccinations in the past 12 months. The classification process was performed using the logistic regression (LR), random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGB) machine learning techniques. Because the Ministry of Health and Welfare in Korea offers free influenza immunization for the elderly, separate models were developed for the < 65 and ≥ 65 age groups. Results The accuracy of machine learning models using 16 variables as predictors of low influenza vaccination adherence was compared; for the ≥ 65 age group, XGB (84.7%) and RF (84.7%) have the best accuracies, followed by LR (82.7%) and SVM (77.6%). For the < 65 age group, SVM has the best accuracy (68.4%), followed by RF (64.9%), LR (63.2%), and XGB (61.4%). Conclusions The machine leaning models show comparable performance in classifying adult CVD patients with low adherence to influenza vaccination.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Cheng Qu ◽  
Lin Gao ◽  
Xian-qiang Yu ◽  
Mei Wei ◽  
Guo-quan Fang ◽  
...  

Background. Acute kidney injury (AKI) has long been recognized as a common and important complication of acute pancreatitis (AP). In the study, machine learning (ML) techniques were used to establish predictive models for AKI in AP patients during hospitalization. This is a retrospective review of prospectively collected data of AP patients admitted within one week after the onset of abdominal pain to our department from January 2014 to January 2019. Eighty patients developed AKI after admission (AKI group) and 254 patients did not (non-AKI group) in the hospital. With the provision of additional information such as demographic characteristics or laboratory data, support vector machine (SVM), random forest (RF), classification and regression tree (CART), and extreme gradient boosting (XGBoost) were used to build models of AKI prediction and compared to the predictive performance of the classic model using logistic regression (LR). XGBoost performed best in predicting AKI with an AUC of 91.93% among the machine learning models. The AUC of logistic regression analysis was 87.28%. Present findings suggest that compared to the classical logistic regression model, machine learning models using features that can be easily obtained at admission had a better performance in predicting AKI in the AP patients.


Author(s):  
Nelson Yego ◽  
Juma Kasozi ◽  
Joseph Nkrunziza

The role of insurance in financial inclusion as well as in economic growth is immense. However, low uptake seems to impede the growth of the sector hence the need for a model that robustly predicts uptake of insurance among potential clients. In this research, we compared the performances of eight (8) machine learning models in predicting the uptake of insurance. The classifiers considered were Logistic Regression, Gaussian Naive Bayes, Support Vector Machines, K Nearest Neighbors, Decision Tree, Random Forest, Gradient Boosting Machines and Extreme Gradient boosting. The data used in the classification was from the 2016 Kenya FinAccess Household Survey. Comparison of performance was done for both upsampled and downsampled data due to data imbalance. For upsampled data, Random Forest classifier showed highest accuracy and precision compared to other classifiers but for down sampled data, gradient boosting was optimal. It is noteworthy that for both upsampled and downsampled data, tree-based classifiers were more robust than others in insurance uptake prediction. However, in spite of hyper-parameter optimization, the area under receiver operating characteristic curve remained highest for Random Forest as compared to other tree-based models. Also, the confusion matrix for Random Forest showed least false positives, and highest true positives hence could be construed as the most robust model for predicting the insurance uptake. Finally, the most important feature in predicting uptake was having a bank product hence bancassurance could be said to be a plausible channel of distribution of insurance products.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jian Yu ◽  
Yan Zhou ◽  
Qiong Yang ◽  
Xiaoling Liu ◽  
Lili Huang ◽  
...  

AbstractCarotid atherosclerosis (CAS) is a risk factor for cardiovascular and cerebrovascular events, but duplex ultrasonography isn’t recommended in routine screening for asymptomatic populations according to medical guidelines. We aim to develop machine learning models to screen CAS in asymptomatic adults. A total of 2732 asymptomatic subjects for routine physical examination in our hospital were included in the study. We developed machine learning models to classify subjects with or without CAS using decision tree, random forest (RF), extreme gradient boosting (XGBoost), support vector machine (SVM) and multilayer perceptron (MLP) with 17 candidate features. The performance of models was assessed on the testing dataset. The model using MLP achieved the highest accuracy (0.748), positive predictive value (0.743), F1 score (0.742), area under receiver operating characteristic curve (AUC) (0.766) and Kappa score (0.445) among all classifiers. It’s followed by models using XGBoost and SVM. In conclusion, the model using MLP is the best one to screen CAS in asymptomatic adults based on the results from routine physical examination, followed by using XGBoost and SVM. Those models may provide an effective and applicable method for physician and primary care doctors to screen asymptomatic CAS without risk factors in general population, and improve risk predictions and preventions of cardiovascular and cerebrovascular events in asymptomatic adults.


Author(s):  
Sanghee Moon ◽  
Hyun-Je Song ◽  
Vibhash D. Sharma ◽  
Kelly E. Lyons ◽  
Rajesh Pahwa ◽  
...  

Abstract Background Parkinson’s disease (PD) and essential tremor (ET) are movement disorders that can have similar clinical characteristics including tremor and gait difficulty. These disorders can be misdiagnosed leading to delay in appropriate treatment. The aim of the study was to determine whether balance and gait variables obtained with wearable inertial motion sensors can be utilized to differentiate between PD and ET using machine learning. Additionally, we compared classification performances of several machine learning models. Methods This retrospective study included balance and gait variables collected during the instrumented stand and walk test from people with PD (n = 524) and with ET (n = 43). Performance of several machine learning techniques including neural networks, support vector machine, k-nearest neighbor, decision tree, random forest, and gradient boosting, were compared with a dummy model or logistic regression using F1-scores. Results Machine learning models classified PD and ET based on balance and gait characteristics better than the dummy model (F1-score = 0.48) or logistic regression (F1-score = 0.53). The highest F1-score was 0.61 of neural network, followed by 0.59 of gradient boosting, 0.56 of random forest, 0.55 of support vector machine, 0.53 of decision tree, and 0.49 of k-nearest neighbor. Conclusions This study demonstrated the utility of machine learning models to classify different movement disorders based on balance and gait characteristics collected from wearable sensors. Future studies using a well-balanced data set are needed to confirm the potential clinical utility of machine learning models to discern between PD and ET.


2019 ◽  
Author(s):  
KC Govinda ◽  
Md Mahmudulla Hassan ◽  
Suman Sirimulla

AbstractKinases are one of the most important classes of drug targets for therapeutic use. Algorithms that can accurately predict the drug-kinase inhibitor constant (pKi) of kinases can considerably accelerate the drug discovery process. In this study, we have developed computational models, leveraging machine learning techniques, to predict ligand-kinase (pKi) values. Kinase-ligand inhibitor constant (Ki) data was retrieved from Drug Target Commons (DTC) and Metz databases. Machine learning models were developed based on structural and physicochemical features of the protein and, topological pharmacophore atomic triplets fingerprints of the ligands. Three machine learning models [random forest (RFR), extreme gradient boosting (XGBoost) and artificial neural network (ANN)] were tested for model development. The performance of our models were evaluated using several metrics with 95% confidence interval. RFR model was finally selected based on the evaluation metrics on test datasets and used for web implementation. The best and selected model achieved a Pearson correlation coefficient (R) of 0.887 (0.881, 0.893), root-mean-square error (RMSE) of 0.475 (0.465, 0.486), Concordance index (Con. Index) of 0.854 (0.851, 0.858), and an area under the curve of receiver operating characteristic curve (AUC-ROC) of 0.957 (0.954, 0.960) during the internal 5-fold cross validation.AvailabilityGitHub: https://github.com/sirimullalab/KinasepKipred, Docker: sirimullalab/kinasepkipredImplementationhttps://drugdiscovery.utep.edu/pki/Graphical TOC Entry


2020 ◽  
Author(s):  
Albert Morera ◽  
Juan Martínez de Aragón ◽  
José Antonio Bonet ◽  
Jingjing Liang ◽  
Sergio de-Miguel

Abstract BackgroundThe prediction of biogeographical patterns from a large number of driving factors with complex interactions, correlations and non-linear dependences require advanced analytical methods and modelling tools. This study compares different statistical and machine learning models for predicting fungal productivity biogeographical patterns as a case study for the thorough assessment of the performance of alternative modelling approaches to provide accurate and ecologically-consistent predictions.MethodsWe evaluated and compared the performance of two statistical modelling techniques, namely, generalized linear mixed models and geographically weighted regression, and four machine learning models, namely, random forest, extreme gradient boosting, support vector machine and deep learning to predict fungal productivity. We used a systematic methodology based on substitution, random, spatial and climatic blocking combined with principal component analysis, together with an evaluation of the ecological consistency of spatially-explicit model predictions.ResultsFungal productivity predictions were sensitive to the modelling approach and complexity. Moreover, the importance assigned to different predictors varied between machine learning modelling approaches. Decision tree-based models increased prediction accuracy by ~7% compared to other machine learning approaches and by more than 25% compared to statistical ones, and resulted in higher ecological consistence at the landscape level.ConclusionsWhereas a large number of predictors are often used in machine learning algorithms, in this study we show that proper variable selection is crucial to create robust models for extrapolation in biophysically differentiated areas. When dealing with spatial-temporal data in the analysis of biogeographical patterns, climatic blocking is postulated as a highly informative technique to be used in cross-validation to assess the prediction error over larger scales. Random forest was the best approach for prediction both in sampling-like environments as well as in extrapolation beyond the spatial and climatic range of the modelling data.


2020 ◽  
Vol 10 (3) ◽  
pp. 1151
Author(s):  
Hanna Kim ◽  
Young-Seob Jeong ◽  
Ah Reum Kang ◽  
Woohyun Jung ◽  
Yang Hoon Chung ◽  
...  

Tachycardia is defined as a heart rate greater than 100 bpm for more than 1 min. Tachycardia often occurs after endotracheal intubation and can cause serious complication in patients with cardiovascular disease. The ability to predict post-intubation tachycardia would help clinicians by notifying a potential event to pre-treat. In this paper, we predict the potential post-intubation tachycardia. Given electronic medical record and vital signs collected before tracheal intubation, we predict whether post-intubation tachycardia will occur within 10 min. Of 1931 available patient datasets, 257 remained after filtering those with inappropriate data such as outliers and inappropriate annotations. Three feature sets were designed using feature selection algorithms, and two additional feature sets were defined by statistical inspection or manual examination. The five feature sets were compared with various machine learning models such as naïve Bayes classifiers, logistic regression, random forest, support vector machines, extreme gradient boosting, and artificial neural networks. Parameters of the models were optimized for each feature set. By 10-fold cross validation, we found that an logistic regression model with eight-dimensional hand-crafted features achieved an accuracy of 80.5%, recall of 85.1%, precision of 79.9%, an F1 score of 79.9%, and an area under the receiver operating characteristic curve of 0.85.


Author(s):  
Young Jae Kim

The diagnosis of sarcopenia requires accurate muscle quantification. As an alternative to manual muscle mass measurement through computed tomography (CT), artificial intelligence can be leveraged for the automation of these measurements. Although generally difficult to identify with the naked eye, the radiomic features in CT images are informative. In this study, the radiomic features were extracted from L3 CT images of the entire muscle area and partial areas of the erector spinae collected from non-small cell lung carcinoma (NSCLC) patients. The first-order statistics and gray-level co-occurrence, gray-level size zone, gray-level run length, neighboring gray-tone difference, and gray-level dependence matrices were the radiomic features analyzed. The identification performances of the following machine learning models were evaluated: logistic regression, support vector machine (SVM), random forest, and extreme gradient boosting (XGB). Sex, coarseness, skewness, and cluster prominence were selected as the relevant features effectively identifying sarcopenia. The XGB model demonstrated the best performance for the entire muscle, whereas the SVM was the worst-performing model. Overall, the models demonstrated improved performance for the entire muscle compared to the erector spinae. Although further validation is required, the radiomic features presented here could become reliable indicators for quantifying the phenomena observed in the muscles of NSCLC patients, thus facilitating the diagnosis of sarcopenia.


2022 ◽  
Vol 14 (1) ◽  
pp. 229
Author(s):  
Jiarui Shi ◽  
Qian Shen ◽  
Yue Yao ◽  
Junsheng Li ◽  
Fu Chen ◽  
...  

Chlorophyll-a concentrations in water bodies are one of the most important environmental evaluation indicators in monitoring the water environment. Small water bodies include headwater streams, springs, ditches, flushes, small lakes, and ponds, which represent important freshwater resources. However, the relatively narrow and fragmented nature of small water bodies makes it difficult to monitor chlorophyll-a via medium-resolution remote sensing. In the present study, we first fused Gaofen-6 (a new Chinese satellite) images to obtain 2 m resolution images with 8 bands, which was approved as a good data source for Chlorophyll-a monitoring in small water bodies as Sentinel-2. Further, we compared five semi-empirical and four machine learning models to estimate chlorophyll-a concentrations via simulated reflectance using fused Gaofen-6 and Sentinel-2 spectral response function. The results showed that the extreme gradient boosting tree model (one of the machine learning models) is the most accurate. The mean relative error (MRE) was 9.03%, and the root-mean-square error (RMSE) was 4.5 mg/m3 for the Sentinel-2 sensor, while for the fused Gaofen-6 image, MRE was 6.73%, and RMSE was 3.26 mg/m3. Thus, both fused Gaofen-6 and Sentinel-2 could estimate the chlorophyll-a concentrations in small water bodies. Since the fused Gaofen-6 exhibited a higher spatial resolution and Sentinel-2 exhibited a higher temporal resolution.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6019
Author(s):  
José Manuel Lozano Domínguez ◽  
Faroq Al-Tam ◽  
Tomás de J. Mateo Sanguino ◽  
Noélia Correia

Improving road safety through artificial intelligence-based systems is now crucial turning smart cities into a reality. Under this highly relevant and extensive heading, an approach is proposed to improve vehicle detection in smart crosswalks using machine learning models. Contrarily to classic fuzzy classifiers, machine learning models do not require the readjustment of labels that depend on the location of the system and the road conditions. Several machine learning models were trained and tested using real traffic data taken from urban scenarios in both Portugal and Spain. These include random forest, time-series forecasting, multi-layer perceptron, support vector machine, and logistic regression models. A deep reinforcement learning agent, based on a state-of-the-art double-deep recurrent Q-network, is also designed and compared with the machine learning models just mentioned. Results show that the machine learning models can efficiently replace the classic fuzzy classifier.


Sign in / Sign up

Export Citation Format

Share Document