scholarly journals Hadrurid Scorpion Toxins: Evolutionary Conservation and Selective Pressures

Toxins ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 637 ◽  
Author(s):  
Carlos E. Santibáñez-López ◽  
Matthew R. Graham ◽  
Prashant P. Sharma ◽  
Ernesto Ortiz ◽  
Lourival D. Possani

Scorpion toxins are thought to have originated from ancestral housekeeping genes that underwent diversification and neofunctionalization, as a result of positive selection. Our understanding of the evolutionary origin of these peptides is hindered by the patchiness of existing taxonomic sampling. While recent studies have shown phylogenetic inertia in some scorpion toxins at higher systematic levels, evolutionary dynamics of toxins among closely related taxa remain unexplored. In this study, we used new and previously published transcriptomic resources to assess evolutionary relationships of closely related scorpions from the family Hadruridae and their toxins. In addition, we surveyed the incidence of scorpine-like peptides (SLP, a type of potassium channel toxin), which were previously known from 21 scorpion species. We demonstrate that scorpine-like peptides exhibit gene duplications. Our molecular analyses demonstrate that only eight sites of two SLP copies found in scorpions are evolving under positive selection, with more sites evolving under negative selection, in contrast to previous findings. These results show evolutionary conservation in toxin diversity at shallow taxonomic scale.

2019 ◽  
Author(s):  
Susanne Tilk ◽  
Christina Curtis ◽  
Dmitri A Petrov ◽  
Christopher D McFarland

AbstractCancer genomes exhibit surprisingly weak signatures of negative selection1,2. This may be because tumors evolve under weak selective pressures (‘weak selection’) or because genome-wide linkage in cancer prevents most deleterious mutations from being removed due to Hill-Robertson interference3 (‘inefficient selection’). The weak selection model argues that most genes are only important for multicellular function and that selection acts only on a subset of essential genes. In contrast, the inefficient selection model predicts that only cancers with low mutational burdens, where linkage effects are minimal, will exhibit strong signals of negative selection against deleterious passengers and positive selection for beneficial drivers. We leverage the 10,000-fold variation in mutational burden across cancer subtypes to stratify tumors by their genome-wide mutational burden and used a normalized ratio of nonsynonymous to synonymous substitutions (dN/dS) to quantify the extent that selection varies with mutation rate. We find that appreciable negative selection (dN/dS ~ 0.4) is present in tumors with a low mutational burden, while the remaining cancers (96%) exhibit dN/dS ratios approaching 1, suggesting that the majority of tumors do not remove deleterious passengers. A parallel pattern is seen in drivers, where positive selection attenuates as the mutational burden of cancers increases. Both trends persist across tumor-types, are not exclusive to essential or housekeeping genes, are present in clonal and subclonal mutations, and persist in Copy Number Alterations. A consequence of this inability to remove deleterious passengers is that tumors with elevated mutational burdens, which are expected to harbor substantial protein folding stress, upregulate heat shock pathways. Finally, using evolutionary modeling, we find that Hill-Robertson interference alone can reproduce the patterns of attenuated selection observed in both drivers and passengers if the average fitness cost of passengers is 1.0% and the average fitness benefit of drivers is 19%. As a result, despite the weak individual fitness effects of passengers, most cancers harbor a large mutational load (median ~40% total fitness cost). Collectively, our findings suggest that the lack of observed negative selection in most tumors is not due to relaxed selective pressures, but rather the inability of selection to remove individual deleterious mutations in the presence of genome-wide linkage.


2013 ◽  
Vol 94 (9) ◽  
pp. 2082-2093 ◽  
Author(s):  
A. Jeanine Abrams ◽  
David C. Cannatella ◽  
David M. Hillis ◽  
Sara L. Sawyer

Ranaviruses have been implicated in recent declines in global amphibian populations. Compared with the family Iridoviridae, to which the genus Ranavirus belongs, ranaviruses have a wide host range in that species/strains are known to infect fish, amphibians and reptiles, presumably due to recent host-switching events. We used eight sequenced ranavirus genomes and two selection-detection methods (site based and branch based) to identify genes that exhibited signatures of positive selection, potentially due to the selective pressures at play during host switching. We found evidence of positive selection acting on four genes via the site-based method, three of which were newly acquired genes unique to ranavirus genomes. Using the branch-based method, we identified eight additional candidate genes that exhibited signatures of dN /dS (non-synonymous/synonymous substitution rate) >1 in the clade where intense host switching had occurred. We found that these branch-specific patterns of elevated dN /dS were enriched in a small group of viral genes that have been acquired most recently in the ranavirus genome, compared with core genes that are shared among all members of the family Iridoviridae. Our results suggest that the group of newly acquired genes in the ranavirus genome may have undergone recent adaptive changes that have facilitated interspecies and interclass host switching.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
M. Pilar Francino

Much of the observed variation among closely related bacterial genomes is attributable to gains and losses of genes that are acquired horizontally as well as to gene duplications and larger amplifications. The genomic flexibility that results from these mechanisms certainly contributes to the ability of bacteria to survive and adapt in varying environmental challenges. However, the duplicability and transferability of individual genes imply that natural selection should operate, not only at the organismal level, but also at the level of the gene. Genes can be considered semiautonomous entities that possess specific functional niches and evolutionary dynamics. The evolution of bacterial genes should respond both to selective pressures that favor competition, mostly among orthologs or paralogs that may occupy the same functional niches, and cooperation, with the majority of other genes coexisting in a given genome. The relative importance of either type of selection is likely to vary among different types of genes, based on the functional niches they cover and on the tightness of their association with specific organismal lineages. The frequent availability of new functional niches caused by environmental changes and biotic evolution should enable the constant diversification of gene families and the survival of new lineages of genes.


2020 ◽  
Author(s):  
Christopher McFarland ◽  
Susanne Tilk ◽  
Christina Curtis ◽  
Dmitri Petrov

Abstract Cancer genomes exhibit surprisingly weak signatures of negative selection. This may be because tumors evolve under weak selective pressures (‘weak selection’) or because genome-wide linkage in cancer prevents most deleterious mutations from being removed due to Hill-Robertson interference3 (‘inefficient selection’). The weak selection model argues that most genes are only important for multicellular function and that selection acts only on a subset of essential genes. In contrast, the inefficient selection model predicts that only cancers with low mutational burdens, where linkage effects are minimal, will exhibit strong signals of negative selection against deleterious passengers and positive selection for beneficial drivers. We leverage the 10,000-fold variation in mutational burden across cancer subtypes to stratify tumors by their genome-wide mutational burden and used a normalized ratio of nonsynonymous to synonymous substitutions (dN/dS) to quantify the extent that selection varies with mutation rate. We find that appreciable negative selection (dN/dS ~ 0.4) is present in tumors with a low mutational burden, while the remaining cancers (96%) exhibit dN/dS ratios approaching 1, suggesting that the majority of tumors do not remove deleterious passengers. A parallel pattern is seen in drivers, where positive selection attenuates as the mutational burden of cancers increases. Both trends persist across tumor-types, are not exclusive to essential or housekeeping genes, are present in clonal and subclonal mutations, and persist in Copy Number Alterations. A consequence of this inability to remove deleterious passengers is that tumors with elevated mutational burdens, which are expected to harbor substantial protein folding stress, upregulate heat shock pathways. Finally, using evolutionary modeling, we find that Hill-Robertson interference alone can reproduce the patterns of attenuated selection observed in both drivers and passengers if the average fitness cost of passengers is 1.0% and the average fitness benefit of drivers is 19%. As a result, despite the weak individual fitness effects of passengers, most cancers harbor a large mutational load (median ~40% total fitness cost). Collectively, our findings suggest that the lack of observed negative selection in most tumors is not due to relaxed selective pressures, but rather the inability of selection to remove individual deleterious mutations in the presence of genome-wide linkage.


2021 ◽  
Author(s):  
William R. Shoemaker ◽  
Evgeniya Polezhaeva ◽  
Kenzie B. Givens ◽  
Jay T. Lennon

Fluctuations in the availability of resources constrains the growth and reproduction of individuals, which in turn effects the evolution of their respective populations. Many organisms are able to respond to fluctuations by entering a reversible state of reduced metabolic activity, a phenomenon known as dormancy. This pool of dormant individuals (i.e., a seed bank) does not reproduce and is expected to act as an evolutionary buffer, though it is difficult to observe this effect directly over an extended evolutionary timescale. Through genetic manipulation, we analyze the molecular evolutionary dynamics of Bacillus subtilis populations in the presence and absence of a seed bank over 700 days. We find that the ability to enter a dormant state increases the accumulation of genetic diversity over time and alters the trajectory of mutations, findings that are recapitulated using simulations based on a simple mathematical model. While the ability to form a seed bank does not alter the degree of negative selection, we find that it consistently alters the direction of molecular evolution across genes. Together, these results show that the ability to form a seed bank affects the direction and rate of molecular evolution over an extended evolutionary timescale.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11677
Author(s):  
Tian Xia ◽  
Lei Zhang ◽  
Guolei Sun ◽  
Xiufeng Yang ◽  
Honghai Zhang

The suppressor of the cytokine signaling (SOCS) family of proteins play an essential role in inhibiting cytokine receptor signaling by regulating immune signal pathways. Although SOCS gene functions have been examined extensively, no comprehensive study has been performed on this gene family’s molecular evolution in reptiles. In this study, we identified eight canonical SOCS genes using recently-published reptilian genomes. We used phylogenetic analysis to determine that the SOCS genes had highly conserved evolutionary dynamics that we classified into two types. We identified positive SOCS4 selection signals in whole reptile lineages and SOCS2 selection signals in the crocodilian lineage. Selective pressure analyses using the branch model and Z-test revealed that these genes were under different negative selection pressures compared to reptile lineages. We also concluded that the nature of selection pressure varies across different reptile lineages on SOCS3, and the crocodilian lineage has experienced rapid evolution. Our results may provide a theoretical foundation for further analyses of reptilian SOCS genes’ functional and molecular mechanisms, as well as their roles in reptile growth and development.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4840 ◽  
Author(s):  
Kai Wei ◽  
Tingting Zhang ◽  
Lei Ma

Housekeeping genes are ubiquitously expressed and maintain basic cellular functions across tissue/cell type conditions. The present study aimed to develop a set of pig housekeeping genes and compare the structure, evolution and function of housekeeping genes in the human–pig lineage. By using RNA sequencing data, we identified 3,136 pig housekeeping genes. Compared with human housekeeping genes, we found that pig housekeeping genes were longer and subjected to slightly weaker purifying selection pressure and faster neutral evolution. Common housekeeping genes, shared by the two species, achieve stronger purifying selection than species-specific genes. However, pig- and human-specific housekeeping genes have similar functions. Some species-specific housekeeping genes have evolved independently to form similar protein active sites or structure, such as the classical catalytic serine–histidine–aspartate triad, implying that they have converged for maintaining the basic cellular function, which allows them to adapt to the environment. Human and pig housekeeping genes have varied structures and gene lists, but they have converged to maintain basic cellular functions essential for the existence of a cell, regardless of its specific role in the species. The results of our study shed light on the evolutionary dynamics of housekeeping genes.


2020 ◽  
Vol 8 (5) ◽  
pp. 634 ◽  
Author(s):  
Zhenxing Xu ◽  
Yoko Masuda ◽  
Chie Hayakawa ◽  
Natsumi Ushijima ◽  
Keisuke Kawano ◽  
...  

Bacteria of the family Geobacteraceae are particularly common and deeply involved in many biogeochemical processes in terrestrial and freshwater environments. As part of a study to understand biogeochemical cycling in freshwater sediments, three iron-reducing isolates, designated as Red96T, Red100T, and Red88T, were isolated from the soils of two paddy fields and pond sediment located in Japan. The cells were Gram-negative, strictly anaerobic, rod-shaped, motile, and red-pigmented on agar plates. Growth of these three strains was coupled to the reduction of Fe(III)-NTA, Fe(III) citrate, and ferrihydrite with malate, methanol, pyruvate, and various organic acids and sugars serving as alternate electron donors. Phylogenetic analysis based on the housekeeping genes (16S rRNA gene, gyrB, rpoB, nifD, fusA, and recA) and 92 concatenated core genes indicated that all the isolates constituted a coherent cluster within the family Geobacteraceae. Genomic analyses, including average nucleotide identity and DNA–DNA hybridization, clearly differentiated the strains Red96T, Red100T, and Red88T from other species in the family Geobacteraceae, with values below the thresholds for species delineation. Along with the genomic comparison, the chemotaxonomic features further helped distinguish the three isolates from each other. In addition, the lower values of average amino acid identity and percentage of conserved protein, as well as biochemical differences with their relatives, indicated that the three strains represented a novel genus in the family Geobacteraceae. Hence, we concluded that strains Red96T, Red100T, and Red88T represented three novel species of a novel genus in the family Geobacteraceae, for which the names Oryzomonas japonicum gen. nov., sp. nov., Oryzomonas sagensis sp. nov., and Oryzomonas ruber sp. nov. are proposed, with type strains Red96T (= NBRC 114286T = MCCC 1K04376T), Red100T (= NBRC 114287T = MCCC 1K04377T), and Red88T (= MCCC 1K03694T = JCM 33033T), respectively.


Sign in / Sign up

Export Citation Format

Share Document