scholarly journals Description of Three Novel Members in the Family Geobacteraceae, Oryzomonas japonicum gen. nov., sp. nov., Oryzomonas sagensis sp. nov., and Oryzomonas ruber sp. nov.

2020 ◽  
Vol 8 (5) ◽  
pp. 634 ◽  
Author(s):  
Zhenxing Xu ◽  
Yoko Masuda ◽  
Chie Hayakawa ◽  
Natsumi Ushijima ◽  
Keisuke Kawano ◽  
...  

Bacteria of the family Geobacteraceae are particularly common and deeply involved in many biogeochemical processes in terrestrial and freshwater environments. As part of a study to understand biogeochemical cycling in freshwater sediments, three iron-reducing isolates, designated as Red96T, Red100T, and Red88T, were isolated from the soils of two paddy fields and pond sediment located in Japan. The cells were Gram-negative, strictly anaerobic, rod-shaped, motile, and red-pigmented on agar plates. Growth of these three strains was coupled to the reduction of Fe(III)-NTA, Fe(III) citrate, and ferrihydrite with malate, methanol, pyruvate, and various organic acids and sugars serving as alternate electron donors. Phylogenetic analysis based on the housekeeping genes (16S rRNA gene, gyrB, rpoB, nifD, fusA, and recA) and 92 concatenated core genes indicated that all the isolates constituted a coherent cluster within the family Geobacteraceae. Genomic analyses, including average nucleotide identity and DNA–DNA hybridization, clearly differentiated the strains Red96T, Red100T, and Red88T from other species in the family Geobacteraceae, with values below the thresholds for species delineation. Along with the genomic comparison, the chemotaxonomic features further helped distinguish the three isolates from each other. In addition, the lower values of average amino acid identity and percentage of conserved protein, as well as biochemical differences with their relatives, indicated that the three strains represented a novel genus in the family Geobacteraceae. Hence, we concluded that strains Red96T, Red100T, and Red88T represented three novel species of a novel genus in the family Geobacteraceae, for which the names Oryzomonas japonicum gen. nov., sp. nov., Oryzomonas sagensis sp. nov., and Oryzomonas ruber sp. nov. are proposed, with type strains Red96T (= NBRC 114286T = MCCC 1K04376T), Red100T (= NBRC 114287T = MCCC 1K04377T), and Red88T (= MCCC 1K03694T = JCM 33033T), respectively.

2021 ◽  
Vol 12 ◽  
Author(s):  
Anusha Rai ◽  
Uppada Jagadeeshwari ◽  
Gupta Deepshikha ◽  
Nandardhane Smita ◽  
Chintalapati Sasikala ◽  
...  

The genus Roseomonas is a significant group of bacteria which is invariably of great clinical and ecological importance. Previous studies have shown that the genus Roseomonas is polyphyletic in nature. Our present study focused on generating a lucid understanding of the phylogenetic framework for the re-evaluation and reclassification of the genus Roseomonas. Phylogenetic studies based on the 16S rRNA gene and 92 concatenated genes suggested that the genus is heterogeneous, forming seven major groups. Existing Roseomonas species were subjected to an array of genomic, phenotypic, and chemotaxonomic analyses in order to resolve the heterogeneity. Genomic similarity indices (dDDH and ANI) indicated that the members were well-defined at the species level. The Percentage of Conserved Proteins (POCP) and the average Amino Acid Identity (AAI) values between the groups of the genus Roseomonas and other interspersing members of the family Acetobacteraceae were below 65 and 70%, respectively. The pan-genome evaluation depicted that the pan-genome was an open type and the members shared 958 core genes. This claim of reclassification was equally supported by the phenotypic and chemotaxonomic differences between the groups. Thus, in this study, we propose to re-evaluate and reclassify the genus Roseomonas and propose six novel genera as Pararoseomonas gen. nov., Falsiroseomonas gen. nov., Paeniroseomonas gen. nov., Plastoroseomonas gen. nov., Neoroseomonas gen. nov., and Pseudoroseomonas gen. nov.


Author(s):  
Kyung June Yim ◽  
Dong-Hyun Jung ◽  
Seok Won Jang ◽  
Sanghwa Park

A cream-coloured, Gram-stain-negative, rod-shaped bacterium, designated strain KSC-6T, was isolated from soil sampled at the Gapcheon River watershed in Daejeon, Republic of Korea. The organism does not require NaCl for growth and grows at pH 6.0–8.0 (optimum, pH 7.0) and 10–37 °C (optimum, 25 °C). Phylogenetic trees based on the 16S rRNA gene sequences reveal that strain KSC-6T belongs to the family Chitinophagaceae within the order Chitinophagales and is most closely related to Panacibacter ginsenosidivorans Gsoil 1550T (95.9% similarity). The genomic DNA G+C content was 38.9 mol%. The major cellular fatty acids (>8 %) of strain KCS-6T were iso-C15:0, iso-C15 : 1 G and iso-C17 : 0 3-OH. The predominant respiratory quinone was menaquinone 7 and the predominant polar lipids were phosphatidylethanolamine, five unidentified aminolipids and two unidentified lipids. Based on genome analyses, low digital DNA–DNA hybridization, average nucleotide identity and average amino acid identity values with closely related genera, and differential chemotaxonomic and physiological properties, we suggest that strain KCS-6T represents a novel species in a new genus in the family Chitinophagaceae , for which the name Limnovirga soli gen. nov., sp. nov. (type strain KCS-6T=KCCM 43337T=NBRC 114336T) is proposed.


2021 ◽  
Author(s):  
Sanghwa Park ◽  
JaYoung Cho ◽  
Dong-Hyun Jung ◽  
SeokWon Jang ◽  
JungHye Eom ◽  
...  

Abstract An aerobic, gram-negative, pink-colored, non-motile, rod-shaped algicidal bacterium, designated JA-25T was isolated from the freshwater of the Geumgang River, Republic of Korea. It grew at 15–30°C, 6.0–9.0 pH, and in the presence of 0–1% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain JA-25T belongs to the Family ‘Spirosomaceae’ and is most closely related to Fibrella aestuarina BUZ 2T (93.6%). The strain JA-25T showed < 90% sequence similarity to other members of the Family ‘Spirosomaceae’. The average nucleotide identity(ANI), in silico DNA-DNA hybridization and the average amino acid identity(AAI) values based on the genomic sequences of JA-25T and F. aestuarina BUZ 2T were 74.4, 20.5 and 73.6 %, respectively. The genomic DNA G + C content was 52.5mol %. The major cellular fatty acids were Summed feature 3 (C16:1 ω6c/C16:1 ω7c), C16:1 ω5c, C16:0 (> 10%). The genomic DNA G + C content was 52.5 mol %. The major respiratory quinone was MK-7 and the polar lipids were phosphatidylethanolamine, two unidentified aminolipids, two phospholipids and five unidentified lipids. Considering the phylogenetic inference, phenotypic and chemotaxonomic data, strain JA-25T should be classified as a novel species of the novel genus Fibrivirga, with the proposed name Fibrivirga algicola sp. nov. The type strain is JA-25T (= KCCM 43334T = NBRC 114259T).


Author(s):  
Torben Sølbeck Rasmussen ◽  
Theresa Streidl ◽  
Thomas C. A. Hitch ◽  
Esther Wortmann ◽  
Paulina Deptula ◽  
...  

A bacterial strain, designated WCA-9-b2T, was isolated from the caecal content of an 18-week-old obese C57BL/6NTac male mouse. According to phenotypic analyses, the isolate was rod-shaped, strictly anaerobic, spore-forming, non-motile and Gram-stain-positive, under the conditions tested. Colonies were irregular and non-pigmented. Analysis of the 16S rRNA gene sequence indicated that the isolate belonged to the order Clostridiales with Dorea longicatena ATCC 27755T (94.9 % sequence identity), Ruminococcus gnavus ATCC 29149T (94.8%) and Clostridium scindens ATCC 35704T (94.3%) being the closest relatives. Whole genome sequencing showed an average nucleotide identity <74.23 %, average amino acid identity <64.52–74.67 % and percentage of conserved proteins values <50 % against the nine closest relatives ( D. longicatena , Ruminococcus gnavus , C. scindens , Dorea formicigenerans , Ruminococcus lactaris , Clostridium hylemonae , Merdimonas faecis , Faecalicatena contorta and Faecalicatena fissicatena ). The genome-based G+C content of genomic DNA was 44.4 mol%. The major cellular fatty acids were C16 : 0 (24.5%), C18 : 1 cis9 (19.8 %), C16 : 0 DMA (11.7%), C18 : 0 (8.4%) and C14 : 0 (6.6%). Respiratory quinones were not detected. The predominant metabolic end products of glucose fermentation were acetate and succinate. Production of CO2 and H2 were detected. Based on these data, we propose that strain WCA-9-b2T represents a novel species within a novel genus, for which the name Sporofaciens musculi gen. nov., sp. nov. is proposed. The type strain is WCA-9-b2T (=DSM 106039T=CECT 30156T).


Author(s):  
Yang Gu ◽  
Xiaojun Zhu ◽  
Feng Lin ◽  
Caihong Shen ◽  
Yong Li ◽  
...  

An anaerobic, Gram-stain-positive, rod-shaped, motile and spore-forming bacterium, designated strain LBM18003T, was isolated from pit clay used for making Chinese strong aroma-type liquor. Growth occurred at 20–40 °C (optimum, 30–37 °C), pH 4.5–9.5 (optimum, pH 6.5–7.0) and in the presence of 0.0–1.0 % (w/v) sodium chloride (optimum, 0 %). The predominant fatty acids were C16:0, C14:0, C14:0 DMA and C16:0 3-OH, and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, two unidentified phospholipids and nine unidentified glycolipids. Phylogenetic analysis revealed that strain LBM18003T is a novel member of the family Oscillospiraceae . The 16S rRNA gene sequence similarities of strain LBM18003T to its two most closely related species were less than 94.5 % for distinguishing genera, i.e. closely related to Caproiciproducens galactitolivorans JCM 30532T (94.1 %) and Caproicibacter fermentans DSM 107079T (93.2 %). The genome size of strain LBM18003T was 2 996 201 bp and its DNA G+C content was 48.48 mol%. Strain LBM18003T exhibited 67.8 and 68.1% pairwise-determined whole-genome average nucleotide identity values to Caproiciproducens galactitolivorans JCM 30532T and Caproicibacter fermentans DSM 107079T, respectively; and showed 62.2 and 61.0 % the average amino acid identity values to Caproiciproducens galactitolivorans JCM 30532T and Caproicibacter fermentans DSM 107079T, respectively; and demonstrated 46.1 and 41.5 % conserved genes to Caproiciproducens galactitolivorans JCM 30532T and Caproicibacter fermentans DSM 107079T, respectively. The comparisons of 16S rRNA gene and genome sequences confirmed that strain LBM18003T represented a novel genus of the family Oscillospiraceae . Based on morphological, physiological, biochemical, chemotaxonomic, genotypic and phylogenetic results, strain LBM18003T represents a novel species of a novel genus of the family Oscillospiraceae , for which the name Caproicibacterium amylolyticum gen. nov., sp. nov. is proposed. The type strain is LBM18003T (=GDMCC 1.1626T=JCM 33783T).


Author(s):  
Ye-Ji Hwang ◽  
Jin-Soo Son ◽  
Soo-Yeong Lee ◽  
Min-Ji Kim ◽  
Jong Myong Park ◽  
...  

KUDC8001T was isolated from the rhizosperic soil of Elymus tsukushiensis in the Dokdo Islands, Republic of Korea. Strain KUDC8001T was Gram-stain-negative, non-motile and rod-shaped. KUDC8001T was catalase- and oxidase-positive. This strain is capable of growing at 4–37 °C and pH 7.0–8.0 and exhibited optimal growth at 25 °C and pH 7.0. It could be grown in R2A, nutrient agar and ISP2 agar plates. The cell width ranged from 0.7 to 1.0 µm, and length ranged from 2.5 to 5.5 µm. The genomic G+C content was 40.8 mol%. Phylogenetic analysis, based on 16S rRNA gene sequences, revealed that the strain KUDC8001T belongs to the genus Adhaeribacter , which is most closely related to the strain A. pallidiroseus HMF7616T (97.5%). The DNA relatedness of KUDC8001T with the type strains of A. pallidiroseus HMF7616T, A. swui 17 mud1-7T and A. arboris HMF7605T was ≤80.3 % based on average nucleotide identity calculations and ≤86.9 % based on average amino acid identity calculations. In silico DNA–DNA hybridization values of the strain KUDC8001T with the most closely related strains were 22.1, 24.0 and 24.4 %. Based on its phenotypic, phylogenetic, genetic and chemotaxonomic features, the strain KUDC8001T should be considered as a novel species in the genus Adhaeribacter , for which we have proposed the name Adhaeribacter radiodurans sp. nov. The type strain is KUDC8001T (=KCTC 82078T=CGMCC 1.18475T).


Author(s):  
Lipika Das ◽  
Sushanta Deb ◽  
Subrata K. Das

A novel strain of a member of the genus Acinetobacter, strain PS-1T, was isolated from the skin of fresh water pufferfish (Tetraodon cutcutia) collected from Mahanadi River, India. Cells were Gram-stain-negative, aerobic, coccoid and non-motile. The predominant polar lipids were diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE) and phospholipid (PL) and the cell wall sugars were glucose, galactose and ribose. The major cellular fatty acids of PS-1T were C18 : 1ω9c (30.67 %), C16 : 1ω7c (19.54 %), C16 : 0 (15.87 %), C12 : 0 (7.35 %) and C12 : 0 3-OH (6.77 %). The genome size was 3.5 Mbp and the DNA G+C content was 41.97 %. Gene ontology study revealed that the major fraction of genes were associated with biological processes (53.99 %) followed by molecular function (30.42 %) and cellular components (15.58 %). Comparisons of 16S rRNA gene sequences revealed 97.94–97.05 % sequence similarity with the closely related type strains of species of the genus Acinetobacter . The average nucleotide identity (ANI) and average amino acid identity (AAI) of PS-1T with reference strains of species of the genus Acinetobacter with validly published names were bellow 95–96 and the corresponding in-silico DNA–DNA hybridization (DDH) values were below 70 %. A phylogenomic tree based on core genome analysis supported these results. Genotypic and phenotypic characteristics of PS-1T indicate that the strain represents a novel species of the genus Acinetobacter and the name Acinetobacter kanungonis sp. nov. is proposed. The type strain is PS-1T (=JCM 34131T=NCIMB 15260T)


2020 ◽  
Vol 70 (12) ◽  
pp. 6518-6523 ◽  
Author(s):  
Ishfaq Nabi Najar ◽  
Sayak Das ◽  
Nagendra Thakur

Members of the genus Geobacillus within the phylum Firmicutes are Gram-stain-positive, aerobic, endospore-forming, obligate thermophiles. In 2016, the genus Geobacillus was subdivided into two genera based on whole-genome approaches. The new genus, Parageobacillus , comprises five genomospecies. In this study, we recommend the reclassification of two Geobacillus species, Geobacillus galactosidasius and Geobacillus yumthangensis , into the genus Parageobacillus . We have applied whole genome approaches to estimate the phylogenetic relatedness among the 18 Geobacillus and Parageobacillus type strains for which genome sequences are currently publicly available. The phylogenomic metrics AAI (average amino acid identity), ANI (average nucleotide identity) and dDDH (digital DNA–DNA hybridization) denoted that the type strains of G. galactosidasius and G. yumthangensis belong to the genus Parageobacillus . Furthermore, a phylogeny based on comparison of the 16S rRNA gene sequences, recN gene sequences and core genes identified from the whole-genome analyses designated that the type strains of G. galactosidasius and G. yumthangensis belong in the genus Parageobacillus . With these findings, we consequently propose that G. galactosidasius and G. yumthangensis should be reclassified as Parageobacillus galactosidasius comb. nov. and Parageobacillus yumthangensis comb. nov.


2019 ◽  
Vol 69 (4) ◽  
pp. 1060-1069 ◽  
Author(s):  
Pedro Raposo ◽  
Tomeu Viver ◽  
Luciana Albuquerque ◽  
Hugo Froufe ◽  
Cristina Barroso ◽  
...  

Chemotaxonomic parameters, phylogenetic analysis of the 16S rRNA gene, phylogenetic analysis of 90 housekeeping genes and 855 core genes, amino acid identity (AAI), average nucleotide identity (ANI) and genomic characteristics were used to examine the 13 species of the genus Meiothermus with validly published names to reclassify this genus. The results indicate that the species of the genus Meiothermus can be divided into three lineages on the basis of the results of the phylogenetic analysis, AAI, the guanine+cytosine (G+C) mole ratio, the ability to synthesize the red-pigmented carotenoid canthaxanthin and the colony colour, as well as other genomic characteristics. The results presented in this study circumscribe the genus Meiothermus to the species Meithermus ruber, Meiothermus cateniformans, Meiothermus taiwanensis, Meiothermus cerbereus, Meiothermus hypogaeus, Meiothermus luteus, Meiothermus rufus and Meiothermus granaticius, for which it is necessary to emend the genus Meiothermus . The species Meiothermus silvanus, which clearly represents a separate genus level lineage was not reclassified in this study for lack of any distinctive phenotypic or genotypic characteristics. The results of this study led us to reclassify the species Meiothermus chliarophilus, Meiothermus timidus, Meiothermus roseus and Meiothermus terrae as species of a novel genus for which we propose the epithet Calidithermus gen. nov.


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4902-4908 ◽  
Author(s):  
Byung-Chun Kim ◽  
Byoung Seung Jeon ◽  
Seil Kim ◽  
Hyunook Kim ◽  
Youngsoon Um ◽  
...  

A strictly anaerobic, Gram-stain-positive, non-spore-forming, rod-shaped bacterial strain, designated BS-1T, was isolated from an anaerobic digestion reactor during a study of bacteria utilizing galactitol as the carbon source. Its cells were 0.3–0.5 μm × 2–4 μm, and they grew at 35–45 °C and at pH 6.0–8.0. Strain BS-1T produced H2, CO2, ethanol, acetic acid, butyric acid and caproic acid as metabolic end products of anaerobic fermentation. Phylogenetic analysis, based on the 16S rRNA gene sequence, showed that strain BS-1T represented a novel bacterial genus within the family Ruminococcaceae, Clostridium Cluster IV. The type strains that were most closely related to strain BS-1T were Clostridium sporosphaeroides KCTC 5598T (94.5 %), Clostridium leptum KCTC 5155T (94.3 %), Ruminococcus bromii ATCC 27255T (92.1 %) and Ethanoligenens harbinense YUAN-3T (91.9 %). Strain BS-1T had 17.6 % and 20.9 % DNA–DNA relatedness values with C. sporosphaeroides DSM 1294T and C. leptum DSM 753T, respectively. The major components of the cellular fatty acids were C16 : 0 dimethyl aldehyde (DMA) (22.1 %), C16 : 0 aldehyde (14.1 %) and summed feature 11 (iso-C17 : 0 3-OH and/or C18 : 2 DMA; 10.0 %). The genomic DNA G+C content was 50.0 mol%. Phenotypic and phylogenetic characteristics allowed strain BS-1T to be clearly distinguished from other taxa of the genus Clostridium Cluster IV. On the basis of these data, the isolate is considered to represent a novel genus and novel species within Clostridium Cluster IV, for which the name Caproiciproducens galactitolivorans gen. nov., sp. nov. is proposed. The type species is BS-1T ( = JCM 30532T and KCCM 43048T).


Sign in / Sign up

Export Citation Format

Share Document