scholarly journals Limited Microcystin, Anatoxin and Cylindrospermopsin Production by Cyanobacteria from Microbial Mats in Cold Deserts

Toxins ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 244 ◽  
Author(s):  
Nataliia Khomutovska ◽  
Małgorzata Sandzewicz ◽  
Łukasz Łach ◽  
Małgorzata Suska-Malawska ◽  
Monika Chmielewska ◽  
...  

Toxic metabolites are produced by many cyanobacterial species. There are limited data on toxigenic benthic, mat-forming cyanobacteria, and information on toxic cyanobacteria from Central Asia is even more scarce. In the present study, we examined cyanobacterial diversity and community structure, the presence of genes involved in toxin production and the occurrence of cyanotoxins in cyanobacterial mats from small water bodies in a cold high-mountain desert of Eastern Pamir. Diversity was explored using amplicon-based sequencing targeting the V3-V4 region of the 16S rRNA gene, toxin potential using PCR-based methods (mcy, nda, ana, sxt), and toxins by enzyme-linked immunosorbent assays (ELISAs) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Molecular identification of cyanobacteria showed a high similarity of abundant taxa to Nostoc PCC-73102, Nostoc PCC-7524, Nodularia PCC-935 and Leptolyngbya CYN68. The PCRs revealed the presence of mcyE and/or ndaF genes in 11 samples and mcyD in six. The partial sequences of the mcyE gene showed high sequence similarity to Nostoc, Planktothrix and uncultured cyanobacteria. LC-MS/MS analysis identified six microcystin congeners in two samples and unknown peptides in one. These results suggest that, in this extreme environment, cyanobacteria do not commonly produce microcystins, anatoxins and cylindrospermopsins, despite the high diversity and widespread occurrence of potentially toxic taxa.

2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 2831-2837 ◽  
Author(s):  
Peter Kämpfer ◽  
Karin Martin ◽  
John A. McInroy ◽  
Stefanie P. Glaeser

A Gram-stain-negative, rod-shaped, non-spore-forming bacterium (strain JM-1396T) producing a yellow pigment, was isolated from the healthy internal stem tissue of post-harvest cotton (Gossypium hirsutum, cultivar ‘DES-119’) grown at the Plant Breeding Unit at the E. V. Smith Research Center in Tallassee (Macon county), AL, USA. 16S rRNA gene sequence analysis of strain JM-1396T showed high sequence similarity values to the type strains of Novosphingobium mathurense, Novosphingobium panipatense (both 98.6 %) and Novosphingobium barchaimii (98.5 %); sequence similarities to all other type strains of species of the genus Novosphingobium were below 98.3 %. DNA–DNA pairing experiments of the DNA of strain JM-1396T and N. mathurense SM117T, N. panipatense SM16T and N. barchaimii DSM 25411T showed low relatedness values of 8 % (reciprocal 7 %), 24 % (reciprocal 26 %) and 19 % (reciprocal 25 %), respectively. Ubiquinone Q-10 was detected as the dominant quinone; the fatty acids C18 : 1ω7c (71.0 %) and the typical 2-hydroxy fatty acid, C14 : 0 2-OH (11.7 %), were detected as typical components. The polar lipid profile contained the diagnostic lipids diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid and phosphatidylcholine. The polyamine pattern contained the major compound spermidine and only minor amounts of other polyamines. All these data revealed that strain JM-1396T represents a novel species of the genus Novosphingobium. For this reason we propose the name Novosphingobium gossypii sp. nov. with the type strain JM-1396T ( = LMG 28605T = CCM 8569T = CIP 110884T).


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 4072-4079 ◽  
Author(s):  
Ryosuke Nakai ◽  
Tomoya Baba ◽  
Hironori Niki ◽  
Miyuki Nishijima ◽  
Takeshi Naganuma

A Gram-stain-positive, aerobic, non-motile, curved (selenoid), rod-shaped actinobacterium, designated KNCT, was isolated from the 0.2 μm-filtrate of river water in western Japan. Cells of strain KNCT were ultramicrosized (0.04–0.05 μm3). The strain grew at 15–37 °C, with no observable growth at 10 °C or 40 °C. The pH range for growth was 7–9, with weaker growth at pH 10. Growth was impeded by the presence of NaCl at concentrations greater than 1 %. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain KNCT showed relatively high sequence similarity (97.2 %) to Alpinimonas psychrophila Cr8-25T in the family Microbacteriaceae. However, strain KNCT formed an independent cluster with cultured, but as-yet-unidentified, species and environmental clones on the phylogenetic tree. The major cellular fatty acids were anteiso-C15 : 0 (41.0 %), iso-C16 : 0 (21.8 %), C16 : 0 (18.0 %) and anteiso-C17 : 0 (12.9 %), and the major menaquinones were MK-11 (71.3 %) and MK-12 (13.6 %). The major polar lipids were phosphatidylglycerol and two unknown glycolipids. The cell-wall muramic acid acyl type was acetyl. The peptidoglycan was B-type, and contained 3-hydroxyglutamic acid, glutamic acid, aspartic acid, glycine, alanine and lysine, with the latter being the diagnostic diamino acid. The G+C content of the genome was unusually low for actinobacteria (52.1 mol%), compared with other genera in the family Microbacteriaceae. Based on the phenotypic characteristics and phylogenetic evidence, strain KNCT represents a novel species of a new genus within the family Microbacteriaceae, for which the name Aurantimicrobium minutum gen. nov., sp. nov. is proposed. The type strain of the type species is KNCT ( = NBRC 105389T = NCIMB 14875T).


2000 ◽  
Vol 90 (7) ◽  
pp. 762-768 ◽  
Author(s):  
A. Masunaka ◽  
A. Tanaka ◽  
T. Tsuge ◽  
T. L. Peever ◽  
L. W. Timmer ◽  
...  

The tangerine pathotype of Alternaria alternata produces a host-selective toxin (HST), known as ACT-toxin, and causes Alternaria brown spot disease of citrus. The structure of ACT-toxin is closely related to AK- and AF-toxins, which are HSTs produced by the Japanese pear and strawberry pathotypes of A. alternata, respectively. AC-, AK-, and AF-toxins are chemically similar and share a 9,10-epoxy-8-hydroxy-9-methyl-decatrienoic acid moiety. Two genes controlling AK-toxin biosynthesis (AKT1 and AKT2) were recently cloned from the Japanese pear pathotype of A. alternata. Portions of these genes were used as heterologous probes in Southern blots, that detected homologs in 13 isolates of A. alternata tangerine pathotype from Minneola tangelo in Florida. Partial sequencing of the homologs in one of these isolates demonstrated high sequence similarity to AKT1 (89.8%) and to AKT2 (90.7%). AKT homologs were not detected in nine isolates of A. alternata from rough lemon, six isolates of nonpathogenic A. alternata, and one isolate of A. citri that causes citrus black rot. The presence of homologs in the Minneola isolates and not in the rough lemon isolates, nonpathogens or black rot isolates, correlates perfectly to pathogenicity on Iyo tangerine and ACT-toxin production. Functionality of the homologs was demonstrated by detection of transcripts using reverse transcription-polymerase chain reaction (RT-PCR) in total RNA of the tangerine pathotype of A. alternata. The high sequence similarity of AKT and AKT homologs in the tangerine patho-type, combined with the structural similarity of AK-toxin and ACT-toxin, may indicate that these homologs are involved in the biosynthesis of the decatrienoic acid moiety of ACT-toxin.


2007 ◽  
Vol 74 (4) ◽  
pp. 942-949 ◽  
Author(s):  
M. Kozubal ◽  
R. E. Macur ◽  
S. Korf ◽  
W. P. Taylor ◽  
G. G. Ackerman ◽  
...  

ABSTRACT Novel thermophilic crenarchaea have been observed in Fe(III) oxide microbial mats of Yellowstone National Park (YNP); however, no definitive work has identified specific microorganisms responsible for the oxidation of Fe(II). The objectives of the current study were to isolate and characterize an Fe(II)-oxidizing member of the Sulfolobales observed in previous 16S rRNA gene surveys and to determine the abundance and distribution of close relatives of this organism in acidic geothermal springs containing high concentrations of dissolved Fe(II). Here we report the isolation and characterization of the novel, Fe(II)-oxidizing, thermophilic, acidophilic organism Metallosphaera sp. strain MK1 obtained from a well-characterized acid-sulfate-chloride geothermal spring in Norris Geyser Basin, YNP. Full-length 16S rRNA gene sequence analysis revealed that strain MK1 exhibits only 94.9 to 96.1% sequence similarity to other known Metallosphaera spp. and less than 89.1% similarity to known Sulfolobus spp. Strain MK1 is a facultative chemolithoautotroph with an optimum pH range of 2.0 to 3.0 and an optimum temperature range of 65 to 75°C. Strain MK1 grows optimally on pyrite or Fe(II) sorbed onto ferrihydrite, exhibiting doubling times between 10 and 11 h under aerobic conditions (65°C). The distribution and relative abundance of MK1-like 16S rRNA gene sequences in 14 acidic geothermal springs containing Fe(III) oxide microbial mats were evaluated. Highly related MK1-like 16S rRNA gene sequences (>99% sequence similarity) were consistently observed in Fe(III) oxide mats at temperatures ranging from 55 to 80°C. Quantitative PCR using Metallosphaera-specific primers confirmed that organisms highly similar to strain MK1 comprised up to 40% of the total archaeal community at selected sites. The broad distribution of highly related MK1-like 16S rRNA gene sequences in acidic Fe(III) oxide microbial mats is consistent with the observed characteristics and growth optima of Metallosphaera-like strain MK1 and emphasizes the importance of this newly described taxon in Fe(II) chemolithotrophy in acidic high-temperature environments of YNP.


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1045-1050 ◽  
Author(s):  
Ying Xu ◽  
Xin-Peng Tian ◽  
Yu-Juan Liu ◽  
Jie Li ◽  
Chang-Jin Kim ◽  
...  

A marine bacterium, designated SCSIO 03483T, was isolated from a marine sediment sample collected from the Nansha Islands in the South China Sea. The strain produced roundish colonies with diffusible yellow-coloured pigment on nutrient agar medium or marine agar 2216. Optimal growth occurred in the presence of 0–4 % (w/v) NaCl, at pH 7.0 and a temperature range of 28–37 °C. 16S rRNA gene sequence analysis indicated that the isolate belonged to the family Flavobacteriaceae and showed relatively high sequence similarity with Imtechella halotolerans K1T (92.7 %). Phylogenetic analysis based on nearly complete 16S rRNA gene sequences revealed that the isolate shared a lineage with members of the genera Imtechella , Joostella and Zhouia . Phospholipids were phosphatidylethanolamine, two unidentified aminolipids and three unknown polar lipids. The major respiratory quinone was MK-6 and the major fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1ω6c/C16 : 1ω7c). The DNA G+C content of strain SCSIO 03483T was 38.4 mol%. On the basis of phenotypic, chemotaxonomic and molecular data, strain SCSIO 03483T represents a novel species in a new genus in the family Flavobacteriaceae , for which the name Sinomicrobium oceani gen. nov., sp. nov. is proposed. The type strain of Sinobacterium oceani is SCSIO 03483T ( = KCTC 23994T = CGMCC 1.12145T).


Plant Disease ◽  
2007 ◽  
Vol 91 (11) ◽  
pp. 1413-1418 ◽  
Author(s):  
Kanchan Nasare ◽  
Amit Yadav ◽  
Anil K. Singh ◽  
K. B. Shivasharanappa ◽  
Y. S. Nerkar ◽  
...  

A total of 240 sugarcane (Saccharum officinarum) plants showing phenotypic symptoms of sugarcane grassy shoot (SCGS) disease were collected from three states of India, Maharashtra, Karnataka, and Uttar Pradesh. Phytoplasmas were detected in all symptomatic samples by the polymerase chain reaction (PCR) amplification of phytoplasma-specific 16S rRNA gene and 16S-23S rRNA spacer region (SR) sequences. No amplification was observed when DNA from asymptomatic plant samples was used as a template. Sixteen samples were selected on the basis of phenotypic symptoms and geographic location, and cloning and sequencing of the 16S rRNA and spacer regions were performed. Multiple sequence alignments of the 16S rRNA sequences revealed that they share very high sequence similarity with phytoplasmas of rice yellow dwarf, 16SrXI. However, the 16S-23S rRNA SR sequence analysis revealed that while the majority of phytoplasmas shared very high (>99%) sequence similarity with previously reported sugarcane phytoplasmas, two of them, namely BV2 (DQ380342) and VD7 (DQ380343), shared relatively low sequence similarity (79 and 84%, respectively). Therefore, these two phytoplasmas may be previously unreported ones that cause significant yield losses in sugarcane in India.


2012 ◽  
Vol 62 (2) ◽  
pp. 409-413 ◽  
Author(s):  
Dong-Heon Lee ◽  
Hyung-Yeel Kahng ◽  
Sun Bok Lee

A Gram-negative, pink-pigmented, non-motile, strictly aerobic rod, designated CNU040T, was isolated from seawater from the coast of Jeju Island in Korea. The temperature, pH and NaCl ranges for growth were 4–30 °C, pH 5.5–10.0 and 0–5.0 % NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain CNU040T belonged to a distinct lineage in the genus Algoriphagus and exhibited high sequence similarity with Algoriphagus terrigena DS-44T (98.3 %) and Algoriphagus alkaliphilus AC-74T (96.6 %) and lower sequence similarity (<96.0 %) with all other members of the genus Algoriphagus. DNA–DNA relatedness between strain CNU040T and A. terrigena KCTC 12545T was 44.5 %. The DNA G+C content of the isolate was 48.5 mol% and the major respiratory quinone was menaquinone-7. The major cellular fatty acids were iso-C15 : 0 (28.6 %) and summed feature 3 (consisting of iso-C15 : 0 2-OH and/or C16 : 1ω7c; 24.0 %). The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, one unknown amino lipid, one unknown aminophospholipid and three unknown polar lipids. On the basis of phenotypic, phylogenetic and genotypic data, strain CNU040T represents a novel species within the genus Algoriphagus, for which the name Algoriphagus jejuensis sp. nov. is proposed. The type strain is CNU040T ( = KCTC 22647T  = JCM 16112T).


2011 ◽  
Vol 61 (9) ◽  
pp. 2081-2088 ◽  
Author(s):  
Ahmed Sabri ◽  
Pascal Leroy ◽  
Eric Haubruge ◽  
Thierry Hance ◽  
Isabelle Frère ◽  
...  

An intracellular symbiotic bacterium was isolated from the flora of a natural clone of the black bean aphid Aphis fabae. The strain was able to grow freely in aerobic conditions on a rich medium containing 1 % of each of the following substrates: glucose, yeast extract and casein peptone. Pure culture was achieved through the use of solid-phase culture on the same medium and the strain was designated CWBI-2.3T. 16S rRNA gene sequence analysis revealed that strain CWBI-2.3T was a member of the class Gammaproteobacteria, having high sequence similarity (>99 %) with ‘Candidatus Serratia symbiotica’, the R-type of secondary endosymbiont that is found in several aphid species. As strain CWBI-2.3T ( = LMG 25624T = DSM 23270T) was the first R-type symbiont to be isolated and characterized, it was designated as the type strain of Serratia symbiotica sp. nov.


2002 ◽  
Vol 184 (2) ◽  
pp. 468-478 ◽  
Author(s):  
Janne B. Utåker ◽  
Kjell Andersen ◽  
Ågot Aakra ◽  
Birgitte Moen ◽  
Ingolf F. Nes

ABSTRACT The autotrophic ammonia-oxidizing bacteria (AOB), which play an important role in the global nitrogen cycle, assimilate CO2 by using ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). Here we describe the first detailed study of RubisCO (cbb) genes and proteins from the AOB. The cbbLS genes from Nitrosospira sp. isolate 40KI were cloned and sequenced. Partial sequences of the RubisCO large subunit (CbbL) from 13 other AOB belonging to the β and γ subgroups of the class Proteobacteria are also presented. All except one of the β-subgroup AOB possessed a red-like type I RubisCO with high sequence similarity to the Ralstonia eutropha enzyme. All of these new red-like RubisCOs had a unique six-amino-acid insert in CbbL. Two of the AOB, Nitrosococcus halophilus Nc4 and Nitrosomonas europaea Nm50, had a green-like RubisCO. With one exception, the phylogeny of the AOB CbbL was very similar to that of the 16S rRNA gene. The presence of a green-like RubisCO in N. europaea was surprising, as all of the other β-subgroup AOB had red-like RubisCOs. The green-like enzyme of N. europaea Nm50 was probably acquired by horizontal gene transfer. Functional expression of Nitrosospira sp. isolate 40KI RubisCO in the chemoautotrophic host R. eutropha was demonstrated. Use of an expression vector harboring the R. eutropha cbb control region allowed regulated expression of Nitrosospira sp. isolate 40KI RubisCO in an R. eutropha cbb deletion strain. The Nitrosospira RubisCO supported autotrophic growth of R. eutropha with a doubling time of 4.6 h. This expression system may allow further functional analysis of AOB cbb genes.


2021 ◽  
Author(s):  
Xuying Bu ◽  
Zhanfeng Xia ◽  
Zhanwen Liu ◽  
Min Ren ◽  
Chuanxing Wan ◽  
...  

Abstract A Gram-stain-negative, aerobic, rod-shaped bacterium, designated strain TRM85114T, was isolated from Jincaotan in Pamir, PR China. We found it has the ability to degrading 1-naphthylamine. Strain TRM85114T grows at 4-40 °C (optimum, 30 °C), at pH 6.0-9.0 (optimum, pH 6.0-7.0) and with 3%-15% (w/v) NaCl (optimum, 3%-6%). Phylogenetic analysis of 16S rRNA gene sequences revealed that strain TRM85114T is affiliated with the genus Halomonas, sharing high sequence similarity (97.3%) with the type strain of Halomonas korlensis CGMCC 1.6981T. The major fatty acids of strain TRM85114T are C12:0 3-OH, C16:0, C17:0 cyclo, C19:0 cyclo ω8c, summed feature 3 (C16:1 ω7c and/or C16:1 ω6c) and summed feature 8 (C18:1 ω6c and/or C18:1 ω7c). The predominant respiratory quinone is Q-7. The genomic DNA G + C content of strain TRM85114T was determined to be 61.6 mol%. Calculating the average nucleotide identities and the digital DNA-DNA hybridization values between strain TRM85114T and the related type Halomonas strains further revealed that TRM85114T represented a novel species of the genus Halomonas. The name Halomonas jincaotanensis sp. nov. is proposed. The type strain is TRM85114T (CCTCC AB 2021006T =LMG 32311T).


Sign in / Sign up

Export Citation Format

Share Document