scholarly journals Identification of Decrease in TRiC Proteins as Novel Targets of Alpha-Amanitin-Derived Hepatotoxicity by Comparative Proteomic Analysis In Vitro

Toxins ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 197
Author(s):  
Doeun Kim ◽  
Sunjoo Kim ◽  
Ann-Yae Na ◽  
Chang Hwan Sohn ◽  
Sangkyu Lee ◽  
...  

Alpha-amanitin (α-AMA) is a cyclic peptide and one of the most lethal mushroom amatoxins found in Amanita phalloides. α-AMA is known to cause hepatotoxicity through RNA polymerase II inhibition, which acts in RNA and DNA translocation. To investigate the toxic signature of α-AMA beyond known mechanisms, we used quantitative nanoflow liquid chromatography–tandem mass spectrometry analysis coupled with tandem mass tag labeling to examine proteome dynamics in Huh-7 human hepatoma cells treated with toxic concentrations of α-AMA. Among the 1828 proteins identified, we quantified 1563 proteins, which revealed that four subunits in the T-complex protein 1-ring complex protein decreased depending on the α-AMA concentration. We conducted bioinformatics analyses of the quantified proteins to characterize the toxic signature of α-AMA in hepatoma cells. This is the first report of global changes in proteome abundance with variations in α-AMA concentration, and our findings suggest a novel molecular regulation mechanism for hepatotoxicity.

MicroRNA ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 64-69 ◽  
Author(s):  
KumChol Ri ◽  
Chol Kim ◽  
CholJin Pak ◽  
PhyongChol Ri ◽  
HyonChol Om

Background: Recent studies have attempted to elucidate the function of super enhancers by means of microRNAs. Although the functional outcomes of miR-1301 have become clearer, the pathways that regulate the expressions of miR-1301 remain unclear. Objective: The objective of this paper was to consider the pathway regulating expression of miR- 1301 and miR-1301 signaling pathways with the inhibition of cell proliferation. Methods: In this study, we prepared the cell clones that the KLF6 super enhancer was deleted by means of the CRISPR/Cas9 system-mediated genetic engineering. Changes in miR-1301 expression after the deletion of the KLF6 super enhancer were evaluated by RT-PCR analysis, and the signal pathway of miR-1301 with inhibition of the cell proliferation was examined using RNA interference technology. Results: The results showed that miR-1301 expression was significantly increased after the deletion of the KLF6 super enhancer. Over-expression of miR-1301 induced by deletion of the KLF6 super enhancer also regulated the expression of p21 and p53 in human hepatoma cells. functional modeling of findings using siRNA specific to miR-1301 showed that expression level changes had direct biological effects on cellular proliferation in Human hepatoma cells. Furthermore, cellular proliferation assay was shown to be directly associated with miR-1301 levels. Conclusion: As a result, it was demonstrated that the over-expression of miR-1301 induced by the disruption of the KLF6 super enhancer leads to a significant inhibition of proliferation in HepG2 cells. Moreover, it was demonstrated that the KLF6 super enhancer regulates the cell-proliferative effects which are mediated, at least in part, by the induction of p21and p53 in a p53-dependent manner. Our results provide the functional significance of miR-1301 in understanding the transcriptional regulation mechanism of the KLF6 super enhancer.


Sign in / Sign up

Export Citation Format

Share Document