scholarly journals Characterization and Toxicity of Crude Toxins Produced by Cordyceps fumosorosea against Bemisia tabaci (Gennadius) and Aphis craccivora (Koch)

Toxins ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 220
Author(s):  
Jianhui Wu ◽  
Bo Yang ◽  
Jing Xu ◽  
Andrew G. S. Cuthbertson ◽  
Shaukat Ali

Cordyceps fumosorosea, an insect pathogenic fungus, produces different toxins/secondary metabolites which can act as pest control agents. This study reports the extraction and characterization of crude mycelial extracts of C. fumosorosea isolate SP502 along with their bio-efficacy against Bemisia tabaci and Aphis craccivora. Fourier transform infrared spectroscopy, liquid chromatography, mass spectrometery and nuclear magnetic resonance analysis of C. fumosorosea isolate SP502 extracts showed the presence of five major compounds—Trichodermin, 5-Methylmellein, Brevianamide F, Enniatin and Beauvericin—which all may potentially be involved in insecticidal activity. The HPLC analysis of C. fumosorosea mycelial extracts and Beauvericin standard showed similar chromatographic peaks, with the content of Beauvericin in the crude toxin being calculated as 0.66 mg/ml. The median lethal concentrations of C. fumosorosea mycelial extracts towards first, second, third and fourth instar nymphs of A. craccivora were 46.35, 54.55, 68.94, and 81.92 µg/mL, respectively. The median lethal concentrations of C. fumosorosea mycelial extracts towards first, second, third and fourth instar nymphs of B. tabaci were 62.67, 72.84, 77.40, and 94.40 µg/mL, respectively. Our results demonstrate that bioactive compounds produced by C. fumosorosea isolate SP502 have insecticidal properties and could, therefore, be developed into biopesticides for the management of B. tabaci and A. craccivora.

2017 ◽  
Vol 51 (05) ◽  
Author(s):  
Indrajeet Singh Rajawat ◽  
M. A. Alam ◽  
Akhilesh Kumar ◽  
R. K. Tiwari ◽  
Sachin Kumar Jaiswal

Field experiment were carried out during Kharif season 2016-17 to evaluate the efficacy of Flubendiamide 24 % + Thiacloprid 24% SC 200 ml/ha, Flubendiamide 39.35% SC 125 ml/ha, Thiacloprid 21.7% SC 250 ml/ha, Chlorantraniliprole18.5% SC 160 ml/ha, Flubendiamide 24 % + Thiacloprid 24% SC 250 ml/ha, Quinalphos 25% EC 1500 ml/ha, Thiomethoxam 25% WG 125 g/ha and Emamectin benzoate 5% SG 220 g/ha against the Bemisia tabaci and Aphis craccivora. Thiacloprid 21.7% SC was found significantly most effective against white fly followed by Thiomethoxam 25% WG. While, Thiomethoxam 25% WG was found significantly most effective against aphid followed by Thiacloprid 21.7% SC whereas, Flubendiamide 39.35% SC was the least effective against both the pest.


1985 ◽  
Vol 40 (11) ◽  
pp. 1075-1084
Author(s):  
W. T. Sobol ◽  
K.R. Sridharan ◽  
I. G. Cameron ◽  
M. M. Pintar

The frequency dependence of the spin-lattice relaxation time T1 was measured at three temperatures near one of the Zeeman-tunneling level matching resonances for pentamethylbenzene. These measurements are correlated with 71 temperature dependence data from the literature. It is shown that the frequency dependence of the Zeeman-torsion coupling time cannot be explained in terms of the semiclassical perturbation theory using time correlation functions. A three bath polarization transfer model is also employed and the applicability of both models discussed. Zeeman-torsion coupling is further investigated using a saturation sequence and the results are compared with the predictions of the three bath polarization transfer model.


Polymer ◽  
2014 ◽  
Vol 55 (16) ◽  
pp. 3869-3878 ◽  
Author(s):  
Sébastien Georges ◽  
Marc Bria ◽  
Philippe Zinck ◽  
Marc Visseaux

2021 ◽  
Vol 19 (1) ◽  
pp. 139-154
Author(s):  
MA Hossain ◽  
MS Yasmin ◽  
MAA Bachchu ◽  
MA Alim

Botanicals are promising and attractive alternatives for pest management. In the present study, three botanical oils namely neem (Azadirachta indica), karanja (Pongamia pinnata) and mehogony (Swietenia mahagoni) were tested against the nymphs of Aphis craccivora Koch to evaluate the toxic and repellent effects under laboratory conditions (25 ± 5oC, 65-75% RH). Four concentrations (0.5, 1.0, 1.5, and 2.0%) along with control were maintained with distilled water and tween-20 was used as emulsifier. Leaf dipped method were used for insect bioassay. Insect mortality was recorded at 24, 48 and 72 hours after intervals while repellency was carried out at 2 hours after intervals upto 10th hours and the collected data were analyzed through MSTAT-C program. Results indicated that all the tested oils had toxic and repellent effects against the A. craccivora nymphs. Among the tested botanical oils, no significant difference was observed in terms of mortality over treatment time. But significant difference was noticed over level of concentrations exerted by the botanical oils. The average highest mortality (28.62%) was recorded by the application of mehogony oil whereas neem oil showed the lowest mortality (27.21%) against the A. craccivora and the mortality was directly proportional to the level of concentrations and hour after treatment (HAT). Probit analysis showed the lowest LD50 values of mehogony oil which revealed the highest toxic effect against the nymph of bean aphid. The highest repellent effect (77.33%) was found in mehogony oil (repellent class IV) among all the botanical oils applied. On the contrary, neem (57.33%) and karanja (55.00%) oils belonged to the same repellent class that is repellent class II. Although all the tested botanical oils evaluated showed toxic and repellent effects but mehogony oil performed as the best potent oil against the nymphs. We therefore suggested using the mehogony oil for the management of bean aphid. SAARC J. Agric., 19(1): 139-154 (2021)


Sign in / Sign up

Export Citation Format

Share Document