scholarly journals Efficient Degradation of Zearalenone by Dye-Decolorizing Peroxidase from Streptomyces thermocarboxydus Combining Catalytic Properties of Manganese Peroxidase and Laccase

Toxins ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 602
Author(s):  
Xing Qin ◽  
Yanzhe Xin ◽  
Xiaoyun Su ◽  
Xiaolu Wang ◽  
Yaru Wang ◽  
...  

Ligninolytic enzymes, including laccase, manganese peroxidase, and dye-decolorizing peroxidase (DyP), have attracted much attention in the degradation of mycotoxins. Among these enzymes, the possible degradation pathway of mycotoxins catalyzed by DyP is not yet clear. Herein, a DyP-encoding gene, StDyP, from Streptomyces thermocarboxydus 41291 was identified, cloned, and expressed in Escherichia coli BL21/pG-Tf2. The recombinant StDyP was capable of catalyzing the oxidation of the peroxidase substrate 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), phenolic lignin compounds 2,6-dimethylphenol, and guaiacol, non-phenolic lignin compound veratryl alcohol, Mn2+, as well as anthraquinone dye reactive blue 19. Moreover, StDyP was able to slightly degrade zearalenone (ZEN). Most importantly, we found that StDyP combined the catalytic properties of manganese peroxidase and laccase, and could significantly accelerate the enzymatic degradation of ZEN in the presence of their corresponding substrates Mn2+ and 1-hydroxybenzotriazole. Furthermore, the biological toxicities of the main degradation products 15-OH-ZEN and 13-OH-ZEN-quinone might be remarkably removed. These findings suggested that DyP might be a promising candidate for the efficient degradation of mycotoxins in food and feed.

Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 429
Author(s):  
Xing Qin ◽  
Xiaoyun Su ◽  
Tao Tu ◽  
Jie Zhang ◽  
Xiaolu Wang ◽  
...  

The co-occurrence of multiple mycotoxins, including aflatoxin B1 (AFB1), zearalenone (ZEN) and deoxynivalenol (DON), widely exists in cereal-based animal feed and food. At present, most reported mycotoxins degrading enzymes target only a certain type of mycotoxins. Therefore, it is of great significance for mining enzymes involved in the simultaneous degradation of different types of mycotoxins. In this study, a dye-decolorizing peroxidase-encoding gene BsDyP from Bacillus subtilis SCK6 was cloned and expressed in Escherichia coli BL21/pG-Tf2. The purified recombinant BsDyP was capable of oxidizing various substrates, including lignin phenolic model compounds 2,6-dimethylphenol and guaiacol, the substrate 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), anthraquinone dye reactive blue 19 and azo dye reactive black 5, as well as Mn2+. In addition, BsDyP could efficiently degrade different types of mycotoxins, including AFB1, ZEN and DON, in presence of Mn2+. More important, the toxicities of their corresponding enzymatic degradation products AFB1-diol, 15-OH-ZEN and C15H18O8 were significantly lower than AFB1, ZEN and DON. In summary, these results proved that BsDyP was a promising candidate for the simultaneous degradation of multiple mycotoxins in animal feed and food.


2021 ◽  
Vol 13 (2) ◽  
pp. 243-249
Author(s):  
Yohanes Bernard Subowo ◽  
Arwan Sugiharto

Some species of Basidiomycetes, specifically white rot groups, produce three ligninolytic enzymes, namely, Lignin Peroxidase (LiP), Manganese Peroxidase (MnP) and Laccase (Lac), which have low activity in degrading Palm Oil Mill Effluent (POME). The research objective was to obtain the data on the ability of the Coltricia cinnamomea to produce LiP, MnP, and Lac enzymes to degrade POME. This research also studied the effect of sucrose, alcohol, veratryl alcohol, CuSO4 and ZnSO4,as inducers. Isolates of Coltricia cinnamomea, which were stored in a PDA media at -20℃ were obtained from the Microbiology section of the Research Center for Biology (LIPI). Furthermore, the growth media used were DM, Bean sprout Extract (TE) and PDB. The result indicated that PDB is the most suitable growth media for the production of ligninolytic enzymes, because in this medium these enzymes showed the highest activity. It was also observed that sucrose increased the laccase activity by 40.80%. Furthermore, Coltricia cinnamomea was able to reduce the concentration of Poly R-478 by 60.74%, after the addition of ZnSO4. In addition, it degraded and decreased the color and COD of POME, by 72.63% and 91.19% respectively, after the addition of veratryl alcohol, and incubation for 10 days. Therefore, this fungus can be used to degrade POME in order to prevent environmental pollution. Coltricia cinnamomea has not been used for POME degradation. By using Coltricia cinnamomea, we  obtained new data regarding the activity of laccase and its ability to degrade POME. 


Toxins ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 566 ◽  
Author(s):  
Xiaolu Wang ◽  
Xing Qin ◽  
Zhenzhen Hao ◽  
Huiying Luo ◽  
Bin Yao ◽  
...  

Enzymatic treatment is an attractive method for mycotoxin detoxification, which ideally prefers the use of one or a few enzymes. However, this is challenged by the diverse structures and co-contamination of multiple mycotoxins in food and feed. Lignin-degrading fungi have been discovered to detoxify organics including mycotoxins. Manganese peroxidase (MnP) is a major enzyme responsible for lignin oxidative depolymerization in such fungi. Here, we demonstrate that eight MnPs from different lignocellulose-degrading fungi (five from Irpex lacteus, one from Phanerochaete chrysosporium, one from Ceriporiopsis subvermispora, and another from Nematoloma frowardii) could all degrade four major mycotoxins (aflatoxin B1, AFB1; zearalenone, ZEN; deoxynivalenol, DON; fumonisin B1, FB1) only in the presence of a dicarboxylic acid malonate, in which free radicals play an important role. The I. lacteus and C. subvermispora MnPs behaved similarly in mycotoxins transformation, outperforming the P. chrysosporium and N. frowardii MnPs. The large evolutionary diversity of these MnPs suggests that mycotoxin degradation tends to be a common feature shared by MnPs. MnP can, therefore, serve as a candidate enzyme for the degradation of multiple mycotoxins in food and feed if careful surveillance of the residual toxicity of degradation products is properly carried out.


1999 ◽  
Vol 65 (3) ◽  
pp. 916-922 ◽  
Author(s):  
Lucília Caramelo ◽  
María Jesús Martínez ◽  
Ángel T. Martínez

ABSTRACT Because there is some controversy concerning the ligninolytic enzymes produced by Pleurotus species, ethylene release from α-keto-γ-thiomethylbutyric acid (KTBA), as described previously for Phanerochaete chrysosporium lignin peroxidase (LiP), was used to assess the oxidative power ofPleurotus eryngii cultures and extracellular proteins. Lignin model dimers were used to confirm the ligninolytic capabilities of enzymes isolated from liquid and solid-state fermentation (SSF) cultures. Three proteins that oxidized KTBA in the presence of veratryl alcohol and H2O2 were identified (two proteins were found in liquid cultures, and one protein was found in SSF cultures). These proteins are versatile peroxidases that act on Mn2+, as well as on simple phenols and veratryl alcohol. The two peroxidases obtained from the liquid culture were able to degrade a nonphenolic β-O-4 dimer, yielding veratraldehyde, as well as a phenolic dimer which is not efficiently oxidized by P. chrysosporium peroxidases. The former reaction is characteristic of LiP. The third KTBA-oxidizing peroxidase oxidized only the phenolic dimer (in the presence of Mn2+). Finally, a fourth Mn2+-oxidizing peroxidase was identified in the SSF cultures on the basis of its ability to oxidize KTBA in the presence of Mn2+. This enzyme is related to the Mn-dependent peroxidase of P. chrysosporium because it did not exhibit activity with veratryl alcohol and Mn-independent activity with dimers. These results show that P. eryngii produces three types of peroxidases that have the ability to oxidize lignin but lacks a typical LiP. Similar enzymes (in terms of N-terminal sequence and catalytic properties) are produced by other Pleurotus species. Some structural aspects of P. eryngii peroxidases related to the catalytic properties are discussed.


1999 ◽  
Vol 45 (7) ◽  
pp. 627-631 ◽  
Author(s):  
M A Pickard ◽  
H Vandertol ◽  
R Roman ◽  
R Vazquez-Duhalt

White rot fungi from the University of Alberta Mold Herbarium, identified as able to degrade aromatics from a study of PCB metabolism, were examined for production of ligninolytic enzymes. Production of lignin peroxidase, manganese peroxidase, laccase, and veratryl alcohol oxidase were monitored during growth in different media. Good growth but low enzyme production occurred in a glucose - malt extract - yeast extract medium. Media containing 2% cereal bran in 60 mM phosphate buffer supported high levels of laccase production, up to 13 000 U/L in Coriolopsis gallica UAMH 8260 and manganese peroxidase activity up to 1100 U/L in Bjerkandera adusta UAMH 8258. Cereal bran media supported higher laccase production than 2,5-xylidine and higher manganese peroxidase production than a medium containing manganous ion plus veratryl alcohol.Key words: cereal bran, laccase, manganese peroxidase, white rot fungi.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Nedra Asses ◽  
Lamia Ayed ◽  
Neila Hkiri ◽  
Moktar Hamdi

Congo red is one of the best known and used azo dyes which has two azo bonds (-N=N-) chromophore in its molecular structure. Its structural stability makes it highly toxic and resistant to biodegradation. The objective of this study was to assess the congo red biodegradation and detoxification by Aspergillus niger. The effects of pH, initial dye concentration, temperature, and shaking speed on the decolorization rate and enzymes production were studied. The maximum decolorization was correlated with lignin peroxidase and manganese peroxidase production. Above 97% were obtained when 2 g mycelia were incubated at pH 5, in presence of 200 mg/L of dye during 6 days at 28°C and under 120 to 150 rpm shaking speed. The degraded metabolites were characterized by using LC-MS/MS analyses and the biodegradation mechanism was also studied. Congo red bioconversion formed degradation metabolites mainly by peroxidases activities, i.e., the sodium naphthalene sulfonate (m/z = 227) and the cycloheptadienylium (m/z = 91). Phytotoxicity and microtoxicity tests confirmed that degradation metabolites were less toxic than original dye.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
K. Y. Usha ◽  
K. Praveen ◽  
B. Rajasekhar Reddy

The white rot fungi Stereum ostrea displayed a wide diversity in their response to supplemented inducers, surfactants, and copper sulphate in solid state fermentation. Among the inducers tested, 0.02% veratryl alcohol increased the ligninolytic enzyme production to a significant extent. The addition of copper sulphate at 300 μM concentration has a positive effect on laccase production increasing its activity by 2 times compared to control. Among the surfactants, Tween 20, Tween 80, and Triton X 100, tested in the studies, Tween 80 stimulated the production of ligninolytic enzymes. Biosorption of dyes was carried out by using two lignocellulosic wastes, rice bran and wheat bran, in 50 ppm of remazol brilliant blue and remazol brilliant violet 5R dyes. These dye adsorbed lignocelluloses were then utilized for the production of ligninolytic enzymes in solid state mode. The two dye adsorbed lignocelluloses enhanced the production of laccase and manganese peroxidase but not lignin peroxidase.


2008 ◽  
Vol 3 (5) ◽  
pp. 1934578X0800300 ◽  
Author(s):  
Man Xu ◽  
Jian Han ◽  
Hui-feng Li ◽  
Li Fan ◽  
Ai-hua Liu ◽  
...  

The stability of salvianolic acid B and total phenolic acids from Salvia miltiorrhiza in water solutions at different temperatures, in buffered aqueous solutions at different pHs and in biological fluids, including simulated gastric and intestinal fluids, were investigated in vitro. The results showed that the degradation of salvianolic acid B was pH- and temperature-dependent. Furthermore, structures of the degradation products of salvianolic acid B and total phenolic acids were elucidated by liquid chromatography-electrospray ion trap mass spectrometry and analysis of the degraded solutions revealed seventeen degradation products. The possible degradation pathway of salvianolic acid B is proposed.


2015 ◽  
Vol 3 (2) ◽  
pp. 308-313 ◽  
Author(s):  
H.M. Shantaveera Swamy ◽  
Ramalingappa

In this paper, ligninase enzymes produced by selected mushrooms have been reported. We collected mushrooms from Western Ghats, most of them were edible food. Thirty samples isolated were tested using a plate assay through direct agar plate assay by using ABTS, decolourisation containing the fifteen isolates were able to decolourise the dye, indicating a lignin-degrading ability. Spectrophotometric enzyme assays from all selected isolates were carried out to examine the production of Ligninolytic enzymes (Laccase, lignin peroxidase and manganese peroxidase). Ten selected isolates produced all three kinds of enzymes tested. Lignolytic enzymes are groups of enzymes these are actively involved in bioremediation.Int J Appl Sci Biotechnol, Vol 3(2): 308-313 DOI: http://dx.doi.org/10.3126/ijasbt.v3i2.12732 


Sign in / Sign up

Export Citation Format

Share Document