scholarly journals Enzymatic Degradation of Multiple Major Mycotoxins by Dye-Decolorizing Peroxidase from Bacillus subtilis

Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 429
Author(s):  
Xing Qin ◽  
Xiaoyun Su ◽  
Tao Tu ◽  
Jie Zhang ◽  
Xiaolu Wang ◽  
...  

The co-occurrence of multiple mycotoxins, including aflatoxin B1 (AFB1), zearalenone (ZEN) and deoxynivalenol (DON), widely exists in cereal-based animal feed and food. At present, most reported mycotoxins degrading enzymes target only a certain type of mycotoxins. Therefore, it is of great significance for mining enzymes involved in the simultaneous degradation of different types of mycotoxins. In this study, a dye-decolorizing peroxidase-encoding gene BsDyP from Bacillus subtilis SCK6 was cloned and expressed in Escherichia coli BL21/pG-Tf2. The purified recombinant BsDyP was capable of oxidizing various substrates, including lignin phenolic model compounds 2,6-dimethylphenol and guaiacol, the substrate 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), anthraquinone dye reactive blue 19 and azo dye reactive black 5, as well as Mn2+. In addition, BsDyP could efficiently degrade different types of mycotoxins, including AFB1, ZEN and DON, in presence of Mn2+. More important, the toxicities of their corresponding enzymatic degradation products AFB1-diol, 15-OH-ZEN and C15H18O8 were significantly lower than AFB1, ZEN and DON. In summary, these results proved that BsDyP was a promising candidate for the simultaneous degradation of multiple mycotoxins in animal feed and food.

Toxins ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 602
Author(s):  
Xing Qin ◽  
Yanzhe Xin ◽  
Xiaoyun Su ◽  
Xiaolu Wang ◽  
Yaru Wang ◽  
...  

Ligninolytic enzymes, including laccase, manganese peroxidase, and dye-decolorizing peroxidase (DyP), have attracted much attention in the degradation of mycotoxins. Among these enzymes, the possible degradation pathway of mycotoxins catalyzed by DyP is not yet clear. Herein, a DyP-encoding gene, StDyP, from Streptomyces thermocarboxydus 41291 was identified, cloned, and expressed in Escherichia coli BL21/pG-Tf2. The recombinant StDyP was capable of catalyzing the oxidation of the peroxidase substrate 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), phenolic lignin compounds 2,6-dimethylphenol, and guaiacol, non-phenolic lignin compound veratryl alcohol, Mn2+, as well as anthraquinone dye reactive blue 19. Moreover, StDyP was able to slightly degrade zearalenone (ZEN). Most importantly, we found that StDyP combined the catalytic properties of manganese peroxidase and laccase, and could significantly accelerate the enzymatic degradation of ZEN in the presence of their corresponding substrates Mn2+ and 1-hydroxybenzotriazole. Furthermore, the biological toxicities of the main degradation products 15-OH-ZEN and 13-OH-ZEN-quinone might be remarkably removed. These findings suggested that DyP might be a promising candidate for the efficient degradation of mycotoxins in food and feed.


2020 ◽  
Vol 75 (3-4) ◽  
pp. 75-86
Author(s):  
Taiji Nomura ◽  
Yasuo Kato

AbstractTuliposides (Pos) are major defensive secondary metabolites in tulip (genus Tulipa), having 4-hydroxy-2-methylenebutanoyl and/or (3S)-3,4-dihydroxy-2-methylenebutanoyl groups at the C-1 and/or C-6 positions of d-glucose. The acyl group at the C-6 position is converted to antimicrobial lactones, tulipalins, by tuliposide-converting enzymes (TCEs). In the course of a survey of tulip tissue extracts to identify novel Pos, we found a minute high-performance liquid chromatography peak that disappeared following the action of a TCE, and whose retention time differed from those of known Pos. Spectroscopic analyses of the purified compound, as well as its enzymatic degradation products, revealed its structure as 5″-O-(6-O-(4′-hydroxy-2′-methylenebutanoyl))-β-d-glucopyranosyl-(2″R)-2″-hydroxymethyl-4″-butyrolactone, which is a novel glucoside ester-type Pos. We gave this compound the trivial name ‘tuliposide G’ (PosG). PosG accumulated in bulbs, at markedly lower levels than 6-PosA (the major Pos in bulbs), but was not found in any other tissues. Quantification of PosG in bulbs of 52 types of tulip, including 30 cultivars (Tulipa gesneriana) and 22 wild Tulipa spp., resulted in the detection of PosG in 28 cultivars, while PosG was present only in three wild species belonging to the subgenus Tulipa, the same subgenus to which tulip cultivars belong, suggesting the potential usefulness of PosG as a chemotaxonomic marker in tulip.


2021 ◽  
Vol 66 (1) ◽  
pp. 72-79
Author(s):  
Thuoc Doan Van ◽  
Hung Nguyen Phuc

The effect of physical parameters such as temperature and pH on the production, activity, and stability of α-amylase from Bacillus subtilis V37 was investigated. The results indicated that the optimum culture conditions for enzyme activity were pH 7.0 and 35 oC. The optimum pH and temperature for enzyme activity were 6.0 and 70 oC. The crude enzyme was found to be stable in the pH range of 5.0 to 7.0. The enzyme was stable for 1 h at a temperature from 30 to 80 oC; nearly 100% of enzyme activity remained at temperatures of 30 - 40 oC, and about 34% of original activity remained at a temperature of 80 oC. These features demonstrated that α-amylase from B. subtilis V37 can be applied in many areas such as the food, fermentation, and animal feed industries.


2019 ◽  
Vol 49 (2) ◽  
pp. 57-63
Author(s):  
N. V. Davydova ◽  
V. Yu. Koptev ◽  
Yu. N. Kozlova ◽  
L. I. Sulimova ◽  
V. N. Afonyushkin ◽  
...  

In the course of the study permeability of intestinal mucosa of chickens suffering from eimeriosis while treating them with various veterinary drugs, including probiotics, was evaluated. The simulation of a typical clinical picture of eimeriosis was carried out by oral administration of suspension with coccidial oocysts (1.6 × 105/head) using a probe. To create different forms and different intensity of inflammatory processes, chickens that received various anticoccidial preparations and probiotic strain Bacillus subtilis were infected with eimeria. According to the data from an autopsy, it was found that the use of a spore probiotic based on Bacillus subtilis and anticoccidial drugs containing robenidine hydrochloride and salinomycin had a positive protective effect when treating chickens from eimeriosis. A similar picture was observed when assessing permeability of intestinal mucosa as affected by bacteriophage, whereby permeability decreased with the use of probiotics and the above-mentioned active agents. In general, the decrease in productivity was significant in all groups. However, the effect of spore-based probiotics was quite pronounced against the background of eimeria polyresistance. In the situation where anticoccidial drugs are less effective, the use of a spore-based probiotic can have a noticeable protective effect. The effect of all anticoccidial drugs under study on the concentration of oocysts and the state of the mucosa was insignificant, which indicated polyresistance of different types of eimeria isolated from biological material to these drugs. The analysis of the intestinal mucosa integrity, based on the study of mucosa permeability to bacteriophages and a Johnson and Reid scoring procedure showed that a spore probiotic based on B. subtilis and anticoccidial drugs containing robenidine and salinomycin had the best protective effect against eimeriosis caused by field isolates of eimeria. When treating chickens suffering from eimeriosis caused by polyresistant forms of E. acervulina and E. tenella, it is advisable to use probiotics alongside with drugs based on robenidine and salinomycin.


1998 ◽  
Vol 64 (4) ◽  
pp. 1313-1318 ◽  
Author(s):  
G. E. C. Sheridan ◽  
C. I. Masters ◽  
J. A. Shallcross ◽  
B. M. Mackey

ABSTRACT The relationship between the detection of mRNA and cellular viability in Escherichia coli was investigated in cells killed by heat or ethanol. Reverse transcription-PCR (RT-PCR) methods were developed for detecting mRNA from rpoH,groEL, and tufA genes. mRNA from all three genes was detected immediately after the cells had been killed by heat or ethanol but gradually disappeared with time when dead cells were held at room temperature. In heat-killed cells, some mRNA targets became undetectable after 2 to 16 h, whereas after ethanol treatment, mRNA was still detected after 16 h. In contrast, 16S rRNA was detected by RT-PCR in all samples containing dead cells and did not disappear during a subsequent incubation of 16 h at room temperature. Of the different types of nucleic acid, mRNA is the most promising candidate for an indicator of viability in bacteria, but its persistence in dead cells depends on the inactivating treatment and subsequent holding conditions.


1974 ◽  
Vol 137 (3) ◽  
pp. 543-546
Author(s):  
G. R. Barker ◽  
P. Hodges

1. Native DNA from two strains of Bacillus subtilis was chromatographed by stepwise elution from MAK (methylated albumin on kieselguhr). 2. Transforming activity was confined to two out of the three main fractions, activity being distributed between the two peaks differently for DNA from the different strains. 3. Fractionation of DNA from both strains on 2% agarose gel gave two components. Approx. 75% of the material was eluted within the void volume of the column. Approx. 25% of the material consisted of degradation products of lower molecular weight. 4. Chromatography on MAK of the material of high molecular weight eluted from agarose gel gave a number of peaks differing in molecular weight, indicating that degradation of the DNA takes place during chromatography on MAK. 5. The distribution of transforming activity among the fractions from MAK suggests that degradation occurs preferentially in certain regions of the DNA.


2015 ◽  
Vol 73 (7) ◽  
pp. 1500-1510 ◽  
Author(s):  
Qing Zheng ◽  
Yong Dai ◽  
Xiangyun Han

In this study, ozonation treatment of C.I. Reactive Black 5 (RB5) was investigated at various operating parameters. The results showed that the aqueous solution initially containing 200 mg/L RB5 was quickly decolorized at pH 8.0 with an ozone dose of 3.2 g/h. Reaction intermediates with m/z 281, 546, 201, 350, 286 and 222 were elucidated using liquid chromatography-mass spectrometry, while sulfate ion, nitrate ion and three carboxylic acids (i.e., oxalic acid, formic acid, and acetic acid) were identified by ion exchange chromatography. Thus, the cleavage of the azo bond and the introduction of OH groups in the corresponding positions were proposed as the predominant reaction pathway. The detachment of sulfonic groups was also commonly observed during the ozonation treatment. The proposed degradation mechanism was confirmed by frontier electron density calculations, suggesting the feasibility of predicting the major events in the whole ozonation process with the computational method. Compared with RB5 degradation, the reduction of total organic carbon (TOC) proceeded much more slowly, and approximately 54% TOC was removed after 4 h of ozonation. Acute toxicity tests with Photobacterium phosphoreum showed that the toxicity of reaction solution was firstly increased and then decreased to a negligible level after 160 min.


Sign in / Sign up

Export Citation Format

Share Document