scholarly journals Land Use Changes and Cluster Identification of Dengue Hemorrhagic Fever Cases in Bandung, Indonesia

2020 ◽  
Vol 5 (2) ◽  
pp. 70
Author(s):  
Sri Yusnita Irda Sari ◽  
Yessika Adelwin ◽  
Fedri Ruluwedrata Rinawan

Dengue Hemorrhagic Fever (DHF) in Indonesia has increased steadily with Bandung as a hyper-endemic area holding a high number of cases for years. This study aimed to identify cluster areas and their correlation with land use changes which was indicated by changes of Normalized Difference Vegetation Index (NDVI). Hospital surveillance of 28,327 cases during 2008–2013 was geo-coded into sub-district levels and analyzed to find cluster areas over time and space using SaTScan and ArcGIS. Spearman correlation was used to analyze NDVI with Incidence Rate (IR) in each area. IR of DHF cases tended to increase over 6 years during high precipitation period. Cases were concentrated in several cluster areas in 2009 then moved to eastern part of the city in 2013. NDVI had negative correlation with IR in 2008 (r = −0.258; p = 0.001) and positive correlation in 2012 (r = 0.193; p = 0.017). Clear geographical pattern by cluster identification overtime is beneficial for targeting appropriate vector-control program.

2019 ◽  
Vol 11 (8) ◽  
pp. 2370 ◽  
Author(s):  
Xiaowei Chuai ◽  
Jiqun Wen ◽  
Dachang Zhuang ◽  
Xiaomin Guo ◽  
Ye Yuan ◽  
...  

China is experiencing substantial land-use and land-cover change (LUCC), especially in coastal regions, and these changes have caused many ecological problems. This study selected a typical region of Jiangsu Province and completed a comprehensive and detailed spatial-temporal analysis regarding LUCC and the driving forces. The results show that the rate of land-use change has been accelerating, with land-use experiencing the most substantial changes from 2005 to 2010 for most land-use types and the period from 2010 to 2015 showing a reversed changing trend. Built-up land that occupies cropland was the main characteristic of land-use type change. Southern Jiangsu and the coastline region presented more obvious land-use changes. Social-economic development was the main factor driving increased built-up land expansion and cropland reduction. In addition, land-use policy can significantly affect land-use type changes. For land-cover changes, the normalized difference vegetation index (NDVI) for the land area without land-use type changes increased by 0.005 per year overall. Areas with increasing trends accounted for 82.43% of the total area. Both precipitation and temperature displayed more areas that were positively correlated with NDVI, especially for temperature. Temperature correlated more strongly with NDVI change than precipitation for most vegetation types. Our study can be used as a reference for land-use managers to ensure sustainable and ecological land-use and coastal management.


Author(s):  
A. Baloloy ◽  
R. R. Sta. Ana ◽  
J. A. Cruz ◽  
A. C. Blanco ◽  
N. V. Lubrica ◽  
...  

Abstract. Urbanization can be observed through the occurrence of land-use changes as more land is being transformed and developed for urban use. One of the Philippine cities with high rate of urbanization is Baguio City, known for having a subtropical highland climate. To understand the spatiotemporal relationship between urbanization and temperature, this study aims to analyze the correlation of urban extent with land surface and air temperature in Baguio City using satellite-based built-up extents, land surface temperature (LST) maps, and weather station-recorded air temperature data. Built-up extent layers were derived from three satellite images: Landsat, RapidEye and PlanetScope. Land-use land cover (LULC) maps were generated from Landsat images using biophysical indices such as Normalized Difference Vegetation Index (NDVI) and Normalized Difference Built-up Index (NDBI); while RapidEye and PlanetScope built-up extent maps were generated by applying the visible green-based built-up index (VgNIR-BI). Mean LST values from 1988 to 2018 during the dry and wet seasons were calculated from the Landsat-retrieved surface temperature layers. The result of the study shows that the increase in the built-up extent significantly intensified the LST during the dry season which was observed in all satellite data-derived built-up maps: RapidEye+PlanetScope (2012–2018; r = 0.88), Landsat 8 (2012–2018; r = 0.63) and Landsat 5,7,8 (1988–2018; r = 0.61). The main LST hotspots were detected inside the Central Business District where it expanded gradually from year 1998 (43 ha) to 2011 (83 ha), but have increased extensively within the years 2014 to 2019 (305 ha). On average, 98.5% of the hotspots detected from 1995 to 2019 are within the equivalent built-up area.


2009 ◽  
Vol 62 (2) ◽  
pp. 163-170 ◽  
Author(s):  
Carlos M. Di Bella ◽  
Ignacio J. Negri ◽  
Gabriela Posse ◽  
Florencia R. Jaimes ◽  
Esteban G. Jobbágy ◽  
...  

2018 ◽  
Vol 7 (10) ◽  
pp. 405 ◽  
Author(s):  
Urška Kanjir ◽  
Nataša Đurić ◽  
Tatjana Veljanovski

The European Common Agricultural Policy (CAP) post-2020 timeframe reform will reshape the agriculture land use control procedures from a selected risk fields-based approach into an all-inclusive one. The reform fosters the use of Sentinel data with the objective of enabling greater transparency and comparability of CAP results in different Member States. In this paper, we investigate the analysis of a time series approach using Sentinel-2 images and the suitability of the BFAST (Breaks for Additive Season and Trend) Monitor method to detect changes that correspond to land use anomaly observations in the assessment of agricultural parcel management activities. We focus on identifying certain signs of ineligible (inconsistent) use in permanent meadows and crop fields in one growing season, and in particular those that can be associated with time-defined greenness (vegetation vigor). Depending on the requirements of the BFAST Monitor method and currently time-limited Sentinel-2 dataset for the reliable anomaly study, we introduce customized procedures to support and verify the BFAST Monitor anomaly detection results using the analysis of NDVI (Normalized Difference Vegetation Index) object-based temporal profiles and time-series standard deviation output, where geographical objects of interest are parcels of particular land use. The validation of land use candidate anomalies in view of land use ineligibilities was performed with the information on declared land annual use and field controls, as obtained in the framework of subsidy granting in Slovenia. The results confirm that the proposed combined approach proves efficient to deal with short time series and yields high accuracy rates in monitoring agricultural parcel greenness. As such it can already be introduced to help the process of agricultural land use control within certain CAP activities in the preparation and adaptation phase.


2021 ◽  
Vol 20 (2) ◽  
pp. 1-19
Author(s):  
Tahmid Anam Chowdhury ◽  
◽  
Md. Saiful Islam ◽  

Urban developments in the cities of Bangladesh are causing the depletion of natural land covers over the past several decades. One of the significant implications of the developments is a change in Land Surface Temperature (LST). Through LST distribution in different Land Use Land Cover (LULC) and a statistical association among LST and biophysical indices, i.e., Urban Index (UI), Bare Soil Index (BI), Normalized Difference Builtup Index (NDBI), Normalized Difference Bareness Index (NDBaI), Normalized Difference Vegetation Index (NDVI), and Modified Normalized Difference Water Index (MNDWI), this paper studied the implications of LULC change on the LST in Mymensingh city. Landsat TM and OLI/TIRS satellite images were used to study LULC through the maximum likelihood classification method and LSTs for 1989, 2004, and 2019. The accuracy of LULC classifications was 84.50, 89.50, and 91.00 for three sampling years, respectively. From 1989 to 2019, the area and average LST of the built-up category has been increased by 24.99% and 7.6ºC, respectively. Compared to vegetation and water bodies, built-up and barren soil regions have a greater LST each year. A different machine learning method was applied to simulate LULC and LST in 2034. A remarkable change in both LULC and LST was found through this simulation. If the current changing rate of LULC continues, the built-up area will be 59.42% of the total area, and LST will be 30.05ºC on average in 2034. The LST in 2034 will be more than 29ºC and 31ºC in 59.64% and 23.55% areas of the city, respectively.


2016 ◽  
Vol 4 (3) ◽  
pp. 35
Author(s):  
Agustin Arisandi Mustika ◽  
Samsul Bakri ◽  
Dyah Wulan S. R. Wardani

The conversion of forest area into non-forest area generally can causing the ecology and micro climate change especially rainfall.   The impact of these changes in other side can increasing the probability in occurrence of vector-born disease such as Aedes aegypti mosquito couse of Dengue Hemorrhagic Fever (DHF).   Besides of environmental factors, poverty level, rainfall, and housing conditions the suspected also affect the incidence of dengue.  This research aimed to determine of changes in forest cover and land, poverty level, and housing conditions as well as the impact to the incidence of dengue fever in Lampung. Data collected included primary data of land use changes of Lampung Province and the secondary  data  such  as  the  data  of  precipitation  rapid,  poverty  level,  healthy  house proportion and Incidence Rate of dengue.  The dynamic of changes in forest cover and landper distric/city identified through by Landsat image interpretation 5, 7 and 8  in 2002, 2009 and 2014.   While the impact on DHF analyzed using multiple linear models.   The results showed that there was a significant relationship between the changes of the people forest cover   -1,2634   (p=0,001),   intensive   agricultural   0,5315   (p=0,016),   the   number   of precipitation rapid 0,06869 (p=0,087) and the poverty level -0,2213 (p=0,038) and urbanism region in the towns and villages 28,75 (p=0,010) toward the incidence of dengue in Lampung from the year 2003 to 2014.  Based on the reseacrh result that the goverment should be able to increase the percentage of forest area cause able to decrease the incidence DHF. Keyword: forest conversion, incidence DHF, land use changes


2013 ◽  
Vol 39 (4) ◽  
pp. 59-70 ◽  
Author(s):  
Fredrick Ao Otieno ◽  
Olumuyiwa I Ojo ◽  
George M. Ochieng

Abstract Land cover change (LCC) is important to assess the land use/land cover changes with respect to the development activities like irrigation. The region selected for the study is Vaal Harts Irrigation Scheme (VHS) occupying an area of approximately 36, 325 hectares of irrigated land. The study was carried out using Land sat data of 1991, 2001, 2005 covering the area to assess the changes in land use/land cover for which supervised classification technique has been applied. The Normalized Difference Vegetation Index (NDVI) index was also done to assess vegetative change conditions during the period of investigation. By using the remote sensing images and with the support of GIS the spatial pattern of land use change of Vaal Harts Irrigation Scheme for 15 years was extracted and interpreted for the changes of scheme. Results showed that the spatial difference of land use change was obvious. The analysis reveals that 37.86% of additional land area has been brought under fallow land and thus less irrigation area (18.21%). There is an urgent need for management program to control the loss of irrigation land and therefore reclaim the damaged land in order to make the scheme more viable.


2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Elli, Nufara ◽  
Ali a , Ghufron Mukti ◽  
Tri Baskoro T. Satoto Mail

2012 ◽  
Vol 4 (5) ◽  
pp. 897 ◽  
Author(s):  
Luana Portz ◽  
Laurindo Antonio Guasselli ◽  
Iran Carlos Stalliviere Corrêa

Neste estudo foram analisadas as variações espaciais e temporais do Índice de Vegetação por Diferença Normalizada (NDVI) na lagoa do Peixe, no litoral do Rio Grande do Sul. Para alcançar o objetivo proposto foram utilizadas imagens de satélite Landsat TM5, entre os anos de 1986 e 2009, seguindo os procedimentos de elaboração de mosaico das cenas, verificação de campo, geração das imagens de NDVI, análise de dados de precipitação acumulada, geração dos mapas finais e análise qualitativa dos resultados obtidos. Os resultados obtidos com a geração de imagens de NDVI mostraram que a análise espaço-temporal associada aos dados de precipitação fornecem informações de valiosa importância sobre a dinâmica da lagoa do Peixe. A importância  do NDVI neste estudo se destaca pelo contraste existente entre água e vegetação, realçando os diferentes níveis de água sobre os bancos vegetados presentes na borda oeste da lagoa. Estes bancos são um importante controlador da dinâmica de circulação lagunar, onde em períodos de seca ocorre a compartimentação da lagoa, enquanto que em épocas de grande precipitação e acumulação de água estes bancos ficam submersos. Palavras-chave: Landsat TM, série temporal, Parque Nacional.  Spatial and Temporal Variation of NDVI in the Peixe Lagoon, RS  ABSTRACTThis paper analyzed the spatial and temporal variation of Normalized Difference Vegetation Index (NDVI) in the Peixe lagoon. To reach the purpose,  the NDVI time-series were collected from the study area between year 1986 and 2009 derived from Landsat TM5 satellite. The adopted methodology may be subdivided into the following steps: mosaic of scenes, fild verification, generation of NDVI time-series and qualitative analysis, in addition, it was complemented with rainfall analysis.  The results obtained with the NDVI time-series associated with the rainfall analysis data provide valuable information about the environmental dynamics. The importance of NDVI in this work is given by the contrast between water and vegetation, highlighting the different levels of water over vegetated banks present on the western edge of the lagoon. These banks are an important driver circulation in the lagoon, where in periods of drought occurs the partitioning of the lagoo, while in periods of high precipitation and accumulation of water they are submerged.    Keywords: Landsat TM, time-series, National Park.


Sign in / Sign up

Export Citation Format

Share Document