scholarly journals Large High-Efficiency Thermal Neutron Detectors Based on the Micromegas Technology

Universe ◽  
2018 ◽  
Vol 4 (12) ◽  
pp. 134 ◽  
Author(s):  
Georgios Tsiledakis ◽  
Alain Delbart ◽  
Daniel Desforge ◽  
Ioanis Giomataris ◽  
Thomas Papaevangelou ◽  
...  

Due to the so-called 3He shortage crisis, many detection techniques for thermal neutrons are currently based on alternative converters. There are several possible ways of increasing the detection efficiency for thermal neutrons using the solid neutron-to-charge converters 10B or 10B4C. Here, we present an investigation of the Micromegas technology. The micro-pattern gaseous detector Micromegas was developed in the past years at Saclay and is now used in a wide variety of neutron experiments due to its combination of high accuracy, high rate capability, excellent timing properties, and robustness. A large high-efficiency Micromegas-based neutron detector is proposed for thermal neutron detection, containing several layers of 10B4C coatings that are mounted inside the gas volume. The principle and the fabrication of a single detector unit prototype with overall dimension of ~15 × 15 cm2 and its possibility to modify the number of 10B4C neutron converter layers are described. We also report results from measurements that are verified by simulations, demonstrating that typically five 10B4C layers of 1–2 μm thickness would lead to a detection efficiency of 20% for thermal neutrons and a spatial resolution of sub-mm. The high potential of this novel technique is given by the design being easily adapted to large sizes by constructing a mosaic of several such detector units, resulting in a large area coverage and high detection efficiencies. An alternative way of achieving this is to use a multi-layered Micromegas that is equipped with two-side 10B4C-coated gas electron multiplier (GEM)-type meshes, resulting in a robust and large surface detector. Another innovative and very promising concept for cost-effective, high-efficiency, large-scale neutron detectors is by stacking 10B4C-coated microbulk Micromegas. A prototype was designed and built, and the tests so far look very encouraging.

2021 ◽  
Vol 136 (7) ◽  
Author(s):  
A. Muraro ◽  
G. Claps ◽  
G. Croci ◽  
C. C. Lai ◽  
R. De Oliveira ◽  
...  

AbstractA new position-sensitive thermal neutron detector based on boron-coated converters has been developed as an alternative to today’s standard $$^3\mathrm{He}$$ 3 He -based technology for application to thermal neutron scattering. The key elements of the development are the boron-coated GEM foils (Sauli in Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 386:531, 1997) that are used as a multi-layer neutron converter via the $$^{10}\mathrm{B}(n,\alpha )^7\mathrm{Li}$$ 10 B ( n , α ) 7 Li reaction together with an efficient collection of the produced secondary electrons. This paper reports the test performed on a 3 layers converter prototype coupled to a GEMPix detector (Murtas in Radiat Meas 138:106421, 2020), carried out in order to study the possibility to produce a large-scale multi-layer neutron detector capable to reach high detection efficiency with high spatial resolution and able to sustain the high neutron flux expected in the new neutron spallation source under development like the ESS.


2021 ◽  
Author(s):  
Shuqiang Jiao ◽  
Xuefeng Zhang ◽  
Wei-li Song ◽  
Mingyong Wang ◽  
Jiguo Tu ◽  
...  

Abstract Aqueous aluminum-ion batteries (AAIBs) are potential candidates for large-scale energy storage devices for their advantages of high energy density, resource abundance, low cost, safety, and environmental friendliness. Due to various redox procedures, good reversibility, and high discharge potential, the aqueous aluminum-manganese oxide battery has drawn wide attention, while the critical issues induced from slow kinetics and undesired soluble Mn2+ lead to slow charging, poor rate capability, and low energy density. However, there is very limited progress for performance improvement via conventional chemical or physical modification approaches. To overcome these challenges, an efficient photo-regulation strategy has been proposed in terms of direct radiating visible light on the cell during the galvanostatic charging and discharging. The efficient separation and transmission of photoelectrons in the photo positive electrode dramatically improves the dynamics, and fast charging and enhanced rate performance could be achieved. Photo-oxidation behavior can effectively promote the conversion of soluble Mn2+, thus further enhancing the energy density of the as-assembled aluminum-manganese battery. Furthermore, a photo-conversion efficiency of up to 1.2% has been acquired. Based on the photo-regulation strategy, the mechanism of the photoelectrochemical coupling system has been understood, which opens a promising route for achieving photoelectrochemical batteries with high energy density and fast charge.


2019 ◽  
Vol 34 (1) ◽  
pp. 57-64
Author(s):  
Lucie Fiserova ◽  
Jiri Janda

A YAP:Ce powder was used as a scintillator for the detection of thermal neutrons. For neutrons energy conversion, enriched LiF was used. The dependence of the concentration of the scintillator: LiF ratio on neutron detection efficiency was studied as well as the influence of areal density of layers and different YAP:Ce powder grains. The preamplifier pulse shape study of YAP:Ce was also provided in response to the dependence of shape of the amplitude spectrum on shaping the time setting. It was shown that based on the pulse shape from YAP:Ce, the neutron and gamma pulses can be clearly distinguished. The results were related to the reference mixture of ZnS:Ag/LiF which is commonly used in combination with thermal neutron detectors.


2020 ◽  
Vol 22 (2-3) ◽  
pp. 353-369
Author(s):  
Jeffrey L. Lacy ◽  
Athanasios Athanasiades ◽  
Christopher S. Martin ◽  
Richard Nguyen ◽  
Stephen Davenport ◽  
...  

Modified boron-coated straw (BCS) detector configurations are introduced, in order to improve detection efficiency, and reduce the number of layers required to match the response of high-pressure 3He tubes, in large-scale neutron science instruments. A new 7-straw design employing thin-walled aluminum tubes facilitates operation in vacuum, and substantially reduces the scattering material by a factor of 5 compared with the flow-through design of the Multi-Grid detector. Another design introduces 18 radial walls inside each straw, coated on both sides with enriched boron carbide, to increase the coated wall perimeter 4.3 times. The so-called Pie straw offers a significant benefit in detection efficiency compared with round straws used in LoKI. An example of such a straw having 18 septa is explored in modeling and experimental studies, that can potentially reduce the number of layers needed in large-scale instruments like LoKI by a factor of 2.8. In a parallel development, a totally new configuration of boron-coated detectors is introduced, aimed to address the need for high spatial resolution, and high-rate capability in single crystal diffractometers, like MaNDi and TOPAZ at the SNS, and in neutron reflectometers. The proposed structure is a close-packed array of rectangular cells, each fabricated by wrapping copper foil having a coating of 10B4C on one side and electroplated tin on the other side, around precisely machined rectangular bars. The array is pressed together and then vacuum brazed together. The resulting structure is quite strong and precise in geometry. This so-called Microcell Straw Array can be configured with channel dimensions as small as 0.5 mm × 2.5 mm. Due to its ultra thin walls (25 μm) secondary scattering of neutrons is minimized. It is sealed inside a fully welded thin aluminum containment vessel that allows convenient operation in vacuum. A mature low power readout system capable of an estimated count rate of 22 MHz in a 15 × 15 cm2 detector is also proposed. The improvements are the result of recent advances in BCS design, spurred by the development of compact, high-sensitivity monitors for homeland security and military applications.


2018 ◽  
Vol 27 (01n02) ◽  
pp. 1840002 ◽  
Author(s):  
Machhindra Koirala ◽  
Jia Woei Wu ◽  
Adam Weltz ◽  
Rajendra Dahal ◽  
Yaron Danon ◽  
...  

We present a cost effective and scalable approach to fabricate solid state thermal neutron detectors. Electrophoretic deposition technique is used to fill deep silicon trenches with 10B nanoparticles instead of conventional chemical vapor deposition process. Deep silicon trenches with width of 5-6 μm and depth of 60-65 μm were fabricated in a p-type Si (110) wafer using wet chemical etching method instead of DRIE method. These silicon trenches were converted into continuous p-n junction by the standard phosphorus diffusion process. 10B micro/nano particle suspension in ethyl alcohol was used for electrophoretic deposition of particles in deep trenches and iodine was used to change the zeta potential of the particles. The measured effective boron nanoparticles density inside the trenches was estimated to be 0.7 gm cm-3. Under the self-biased condition, the fabricated device showed the intrinsic thermal neutron detection efficiency of 20.9% for a 2.5 × 2.5 mm2 device area.


2016 ◽  
Vol 4 (26) ◽  
pp. 10321-10328 ◽  
Author(s):  
Hanyin Zhang ◽  
Renzong Hu ◽  
Hui Liu ◽  
Wei Sun ◽  
Zhongchen Lu ◽  
...  

A long cycle life, spherical-shaped Sn–Fe3O4@C ternary-phase composite consisting of nanosized tin (Sn), magnetite (Fe3O4), and graphite (C) was prepared via a two-step process using high-efficiency discharge plasma-assisted milling (P-milling).


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Mingguang Wu ◽  
Wei Ni ◽  
Jin Hu ◽  
Jianmin Ma

Abstract Several emerging energy storage technologies and systems have been demonstrated that feature low cost, high rate capability, and durability for potential use in large-scale grid and high-power applications. Owing to its outstanding ion conductivity, ultrafast Na-ion insertion kinetics, excellent structural stability, and large theoretical capacity, the sodium superionic conductor (NASICON)-structured insertion material NaTi2(PO4)3 (NTP) has attracted considerable attention as the optimal electrode material for sodium-ion batteries (SIBs) and Na-ion hybrid capacitors (NHCs). On the basis of recent studies, NaTi2(PO4)3 has raised the rate capabilities, cycling stability, and mass loading of rechargeable SIBs and NHCs to commercially acceptable levels. In this comprehensive review, starting with the structures and electrochemical properties of NTP, we present recent progress in the application of NTP to SIBs, including non-aqueous batteries, aqueous batteries, aqueous batteries with desalination, and sodium-ion hybrid capacitors. After a thorough discussion of the unique NASICON structure of NTP, various strategies for improving the performance of NTP electrode have been presented and summarized in detail. Further, the major challenges and perspectives regarding the prospects for the use of NTP-based electrodes in energy storage systems have also been summarized to offer a guideline for further improving the performance of NTP-based electrodes.


2021 ◽  
Vol 253 ◽  
pp. 04011
Author(s):  
Małgorzata Wróblewska ◽  
David Blanchet ◽  
Abdallah Lyoussi ◽  
Patrick Blaise ◽  
Zuzanna Marcinkowska ◽  
...  

This paper presents an advanced optimization analysis of the newly developed transmission measurement method conducted in the MARIA MTR reactor for thermal neutrons absorbers estimation in irradiated beryllium elements. Several neutron sources in combination with various thermal neutron detectors are investigated, along with the optimization of the moderating polyethylene layer to improve the signal to background ratio. It was concluded that the use of 239PuBe or 241AmB neutron source with polyethylene of 0.95 g/cm3 density and ∼4.5 cm thickness, as well as either 235U lined fission chamber or BF3 detectors are meeting the requirements for the use in the experiment.


Sign in / Sign up

Export Citation Format

Share Document