scholarly journals Nuclear Matrix Elements for Heavy Ion Sequential Double Charge Exchange Reactions

Universe ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 98
Author(s):  
Horst Lenske ◽  
Jessica Bellone ◽  
Maria Colonna ◽  
Danilo Gambacurta

The theoretical approach to a sequential heavy ion double charge exchange reaction is presented. A brief introduction into the formal theory of second-order nuclear reactions and their application to Double Single Charge Exchange (DSCE) reactions by distorted wave theory is given, thereby completing the theoretical background to our recent work. Formally, the DSCE reaction amplitudes are shown to be separable into superpositions of distortion factors, accounting for initial and final state ion–ion interactions, and nuclear matrix elements. A broad space is given to the construction of nuclear DSCE response functions on the basis of polarization propagator theory. The nuclear response tensors resemble the nuclear matrix elements of 2νββ decay in structure but contain in general a considerable more complex multipole and spin structure. The QRPA theory is used to derive explicit expressions for nuclear matrix elements (NMEs). The differences between the NME of the first and the second interaction vertexes in a DSCE reaction is elucidated. Reduction schemes for the transition form factors are discussed by investigating the closure approximation and the momentum structure of form factors. DSCE unit strength cross sections are derived.

2015 ◽  
Vol 51 (11) ◽  
Author(s):  
F. Cappuzzello ◽  
M. Cavallaro ◽  
C. Agodi ◽  
M. Bondì ◽  
D. Carbone ◽  
...  

2016 ◽  
Vol 47 (3) ◽  
pp. 929
Author(s):  
M. Cavallaro ◽  
F. Cappuzzello ◽  
C. Agodi ◽  
S. Calabrese ◽  
D. Carbone ◽  
...  

2020 ◽  
Vol 807 ◽  
pp. 135528 ◽  
Author(s):  
Jessica I. Bellone ◽  
Stefano Burrello ◽  
Maria Colonna ◽  
José-Antonio Lay ◽  
Horst Lenske

2018 ◽  
Vol 194 ◽  
pp. 02001 ◽  
Author(s):  
D. Carbone ◽  
F. Cappuzzello ◽  
C. Agodi ◽  
M. Cavallaro ◽  
L. Acosta ◽  
...  

The goal of NUMEN project is to access experimentally driven information on Nuclear Matrix Elements (NME) involved in the neutrinoless double beta decay (0νββ), by high-accuracy measurements of the cross sections of Heavy Ion (HI) induced Double Charge Exchange (DCE) reactions. The knowledge of the nuclear matrix elements is crucial to infer the neutrino average masses from the possible measurement of the half-life of 00νββ decay and to compare experiments on different isotopes. In particular, the (18O, 18Ne) and (20Ne, 20O) reactions are performed as tools for β+β+ and β-β- decays, respectively. The experiments are performed at INFN - Laboratory Nazionali del Sud (LNS) in Catania using the Superconducting Cyclotron (CS) to accelerate the beams and the MAGNEX magnetic spectrometer to detect the reaction products. The measured cross sections are very low, limiting the present exploration to few selected isotopes of interest in the context of typically low-yield experimental runs. In order to make feasible a systematic study of all the candidate nuclei, a major upgrade of the LNS facility is foreseen to increase the experimental yield of about two orders of magnitude. To this purpose, frontier technologies are going to be developed for both the accelerator and the detection systems. In parallel, advanced theoretical models will be developed to extract the nuclear structure information from the measured cross sections.


2021 ◽  
Vol 252 ◽  
pp. 04001
Author(s):  
Francesco Cappuzzello ◽  
Luis Acosta ◽  
Clementina Agodi ◽  
Carmen Altana ◽  
Paulina Amador-Valenzuela ◽  
...  

The possibility to use a special class of heavy-ion induced direct reactions, such as double charge exchange reactions, is discussed in view of their application to extract information that may be helpful to determinate the nuclear matrix elements entering in the expression of neutrinoless double beta decay half-life. The strategies adopted in the experimental campaigns performed at INFN - Laboratori Nazionali del Sud are briefly described, emphasizing the advantages of the multi-channel approach to nuclear reaction data analysis.


2019 ◽  
Vol 223 ◽  
pp. 01031
Author(s):  
Horst Lenske

Peripheral heavy ion single and double charge reactions are described by fully quantum mechanical distorted wave methods. A special class of nuclear double charge exchange (DCE) reactions proceeding as a one-step reaction through a two-body process are shown to proceed by nuclear matrix elements of a diagrammatic structure as found also in 0ν2ß decay. These hadronic Majorana-type DCE reactions (MDCE) have to be distinguished from second order DCE reactions, given by double single charge exchange (DSCE) processes, resembling 2ν2ß decay. The theoretical concepts of MDCE are discussed. First results show that ion-ion DCE reactions are the ideal testing grounds for investigations of rare second order nuclear processes, giving insight into nuclear in-medium two-body correlation.


Sign in / Sign up

Export Citation Format

Share Document