scholarly journals Physical Acceptability of the Renyi, Tsallis and Sharma-Mittal Holographic Dark Energy Models in the f(T,B) Gravity under Hubble’s Cutoff

Universe ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 67
Author(s):  
Salim Harun Shekh ◽  
Pedro H. R. S. Moraes ◽  
Pradyumn Kumar Sahoo

In the present article, we investigate the physical acceptability of the spatially homogeneous and isotropic Friedmann–Lemâitre–Robertson–Walker line element filled with two fluids, with the first being pressureless matter and the second being different types of holographic dark energy. This geometric and material content is considered within the gravitational field equations of the f(T,B) (where T is the torsion scalar and the B is the boundary term) gravity in Hubble’s cut-off. The cosmological parameters, such as the Equation of State (EoS) parameter, during the cosmic evolution, are calculated. The models are stable throughout the universe expansion. The region in which the model is presented is dependent on the real parameter δ of holographic dark energies. For all δ≥4.5, the models vary from ΛCDM era to the quintessence era.

2021 ◽  
Vol 36 (08) ◽  
pp. 2150054
Author(s):  
K. Dasu Naidu ◽  
Y. Aditya ◽  
R. L. Naidu ◽  
D. R. K. Reddy

In this paper, our purpose is to discuss the dynamical aspects of Kaluza–Klein five-dimensional cosmological model filled with minimally interacting baryonic matter and dark energy (DE) in the presence of an attractive massive scalar field. We obtain a determinate solution of the Einstein field equations using (i) a relation between the metric potentials and (ii) a power law relation between the average scale factor of the universe and the massive scalar field. We have determined scalar field, matter energy density, DE density, equation of state (EoS) [Formula: see text], deceleration [Formula: see text] and statefinder [Formula: see text] parameters of our model. We also develop [Formula: see text]–[Formula: see text] phase, squared sound speed, statefinders and [Formula: see text]–[Formula: see text] planes in the evolving universe. It is observed that the EoS parameter exhibits quintom-like behavior from quintessence to phantom epoch by crossing the vacuum era of the universe. The squared speed of sound represents the instability of the model, whereas the [Formula: see text]–[Formula: see text] plane shows both thawing and freezing regions. The [Formula: see text]CDM limit is attained in both [Formula: see text]–[Formula: see text] and statefinder planes. We have also discussed the cosmological importance of the above parameters with reference to modern cosmology. It is found that the dynamics of these cosmological parameters indicate the accelerated expansion of the universe which is consistent with the current cosmological observations.


2019 ◽  
Vol 79 (11) ◽  
Author(s):  
Abdul Jawad ◽  
Sadaf Butt ◽  
Shamaila Rani ◽  
Khadija Asif

AbstractIn the framework of fractal universe, the unified models of dark energy and dark matter are being presented with the background of homogenous and isotropic FLRW geometry. The aspects of fractal cosmology helps in better understanding of the universe in different dimensions. Relationship between the squared speed of the sound and the equation of state parameter is the key feature of these models. We have used constant as well as variable forms of speed of sound and express it as a function of equation of state parameter. By utilizing the four different forms of speed of sound, we construct the energy densities and pressures for these models and then various cosmological parameters like hubble parameter, EoS parameter, deceleration parameter and Om- diagnostic are investigated. Graphical analysis of these parameters show that in most of the cases EoS parameters and trajectories of Om-diagnostic corresponds to the quintessence like nature of the universe and the deceleration parameters represent accelerated and decelerated phase. In the end, we remark that cosmological analysis of these models indicates that these models correspond to different well known dark energy models.


2018 ◽  
Vol 15 (04) ◽  
pp. 1850067 ◽  
Author(s):  
Shamaila Rani ◽  
Abdul Jawad

We consider the recently proposed higher derivative torsion corrected modified teleparallel gravity and holographic dark energy (HDE) models. We apply the correspondence scheme to construct models in underlying scenario using various scale factor forms. We investigate the reconstructed functions through equation of state (EoS) parameter. It is demonstrated that the EoS parameter provides quintom-like nature of the Universe in most of the cases, i.e. it drives the Universe from vacuum dark energy era toward phantom era of the Universe by crossing the phantom divide line. We also demonstrate that the consistency with the observational data can be achieved.


Author(s):  
Anirudh Pradhan ◽  
Vinod Kumar Bhardwaj ◽  
Archana Dixit ◽  
Syamala Krishnannair

In this paper, we examine the LRS Bianchi-type-I cosmological model with holographic dark energy. The exact solutions to the corresponding field equations are obtained by using the generalized hybrid expansion law (HEL). The EoS parameter [Formula: see text] for DE is found to be time-dependent and redshift-dependent and its exiting range for derived model is agreeing well with the current observations. Here, we likewise apply two mathematical diagnostics, the statefinders ([Formula: see text]) and [Formula: see text] plan to segregate HDE model from the [Formula: see text]CDM model. Here, the [Formula: see text] diagnostic trajectories are good tools to classify the dynamical DE model. We found that our model lies in both thawing region and freezing region. We also construct the potential as well as dynamics of the quintessence and tachyon scalar field. Some physical and geometric properties of this model along with the physical acceptability of cosmological solution have been discussed in detail.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 635 ◽  
Author(s):  
Abdul Jawad ◽  
Kazuharu Bamba ◽  
Muhammad Younas ◽  
Saba Qummer ◽  
Shamaila Rani

The cosmic expansion phenomenon is being studied through the interaction of newly proposed dark energy models (Tsallis, Rényi and Sharma-Mittal holographic dark energy (HDE) models) with cold dark matter in the framework of loop quantum cosmology. We investigate different cosmic implications such as equation of state parameter, squared sound speed and cosmological plane (ω d - ω d ′ , ω d and ω d ′ represent the equation of state (EoS) parameter and its evolution, respectively). It is found that EoS parameter exhibits quintom like behavior of the universe for all three models of HDE. The squared speed of sound represents the stable behavior of Rényi HDE and Sharma-Mittal HDE at the latter epoch while unstable behavior for Tsallis HDE. Moreover, ω d - ω d ′ plane lies in the thawing region for all three HDE models.


2007 ◽  
Vol 22 (01) ◽  
pp. 41-53 ◽  
Author(s):  
ZE-LONG YI ◽  
TONG-JIE ZHANG

Using the absolute ages of passively evolving galaxies observed at different redshifts, one can obtain the differential ages, the derivative of redshift z with respect to the cosmic time t (i.e. dz/dt). Thus, the Hubble parameter H(z) can be measured through the relation H(z) = -(dz/dt)/(1+z). By comparing the measured Hubble parameter at different redshifts with the theoretical one containing free cosmological parameters, one can constrain current cosmological models. In this paper, we use this method to present the constraint on a spatially flat Friedman–Robert–Walker universe with a matter component and a holographic dark energy component, in which the parameter c plays a significant role in this dark energy model. Firstly we consider three fixed values of c = 0.6, 1.0 and 1.4 in the fitting of data. If we set c free, the best fitting values are c = 0.26, Ωm0 = 0.16, h = 0.9998. It is shown that the holographic dark energy behaves like a quintom-type at the 1σ level. This result is consistent with some other independent cosmological constrains, which imply that c < 1.0 is favored. We also test the results derived from the differential ages using another independent method based on the lookback time to galaxy clusters and the age of the universe. It shows that our results are reliable.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Abdul Jawad ◽  
Abdul Malik Sultan

We investigate the recently proposed holographic dark energy models with the apparent horizon as the IR cutoff by assuming Kaniadakis and generalized Tsallis entropies in the fractal universe. The implications of these models are discussed for both the interacting ( Γ = 3 H b 2 ρ m ) and noninteracting ( b 2 = 0 ) cases through different cosmological parameters. Accelerated expansion of the universe is justified for both models through deceleration parameter q . In this way, the equation of state parameter ω d describes the phantom and quintessence phases of the universe. However, the coincidence parameter r ~ = Ω m / Ω d shows the dark energy- and dark matter-dominated eras for different values of parameters. It is also mentioned here that the squared speed of sound gives the stability of the model except for the interacting case of the generalized Tsallis holographic dark energy model. It is mentioned here that the current dark energy models at the apparent horizon give consistent results with recent observations.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
M. Vijaya Santhi ◽  
Y. Sobhanbabu

AbstractIn this paper, we have investigated Tsallis holographic dark energy (infrared cutoff is the Hubble radius) in homogeneous and anisotropic Bianchi type-III Universe within the framework of Saez–Ballester scalar–tensor theory of gravitation. We have constructed non-interaction and interaction dark energy models by solving the Saez–Ballester field equations. To solve the field equations, we assume a relationship between the metric potentials of the model. We developed the various cosmological parameters (namely deceleration parameter q, equation of state parameter $$\omega _t$$ ω t , squared sound speed $$v_s^2$$ v s 2 , om-diagnostic parameter Om(z) and scalar field $$\phi $$ ϕ ) and well-known cosmological planes (namely $$\omega _t-\omega _t^{'}$$ ω t - ω t ′ plane, where $$'$$ ′ denotes derivative with respect to ln(a) and statefinders ($$r-s$$ r - s ) plane) and analyzed their behavior through graphical representation for our both the models. It is also, quite interesting to mention here that the obtained results are coincide with the modern observational data.


2016 ◽  
Vol 26 (06) ◽  
pp. 1750049 ◽  
Author(s):  
Abdul Jawad ◽  
Shamaila Rani ◽  
Ines G. Salako ◽  
Faiza Gulshan

We discuss the cosmological implications of interacting pilgrim dark energy (PDE) models (with Hubble, Granda–Oliveros and generalized ghost cutoffs) with cold dark matter ([Formula: see text]CDM) in fractal cosmology by assuming the flat universe. We observe that the Hubble parameter lies within observational suggested ranges while deceleration parameter represents the accelerated expansion behavior of the universe. The equation of state (EoS) parameter ([Formula: see text]) corresponds to the quintessence region and phantom region for different cases of [Formula: see text]. Further, we can see that [Formula: see text]–[Formula: see text] (where prime indicates the derivative with respect to natural logarithmic of scale factor) plane describes the freezing and thawing regions and also corresponds to [Formula: see text] limit for some cases of [Formula: see text] (PDE parameter). It is also noted that the [Formula: see text]–[Formula: see text] (state-finder parameters) plane corresponds to [Formula: see text] limit and also shows the Chaplygin as well as phantom/quintessence behavior. It is observed that pilgrim dark energy models in fractal cosmology expressed the consistent behavior with recent observational schemes.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
M. Sharif ◽  
M. Zubair

We develop the connection off(R)theory with new agegraphic and holographic dark energy models. The functionf(R)is reconstructed regarding thef(R)theory as an effective description for these dark energy models. We show the future evolution offand conclude that these functions represent distinct pictures of cosmological eras. The cosmological parameters such as equation of state parameter, deceleration parameter, statefinder diagnostic, andw−w′analysis are investigated which assure the evolutionary paradigm off.


Sign in / Sign up

Export Citation Format

Share Document