scholarly journals Applications of pT-xR Variables in Describing Inclusive Cross Sections at the LHC

Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 196
Author(s):  
Frank Taylor

Invariant inclusive single-particle/jet cross sections in p–p collisions can be factorized in terms of two separable dependences, a [pT−s] sector and an [xR−pT−s] sector. Here, we extend our earlier work by analyzing more extensive data to explore various s-dependent attributes and other systematics of inclusive jet, photon and single particle reactions. Approximate power laws in s,pT and xR are found. Physical arguments are given which relate observations to the underlying physics of parton–parton hard scattering and the parton distribution functions in the proton. We show that the A(s,pT) function, introduced in our earlier publication to describe the pT dependence of the inclusive cross section, is directly related to the underlying hard parton–parton scattering for jet production, with little influence from soft physics. In addition to the A-function, we introduce another function, the F(s,xR) function that obeys radial scaling for inclusive jets and offers another test of the underlying parton physics. An application to heavy ion physics is given, where we use our variables to determine the transparency of cold nuclear matter to penetrating heavy mesons through the lead nucleus.

2018 ◽  
Vol 172 ◽  
pp. 02001
Author(s):  
Anterpreet Kaur

We present results on the measurements of characteristics of events with jets including jet-charge, investigations of shapes and jet mass distributions. The measurements are compared to theoretical predictions including those matched to parton shower and hadronization. Multi-differential jet cross sections are also presented over a wide range in transverse momenta from inclusive jets to multi-jet final states. These measurements have an impact on the determination of the strong coupling constant as well as on parton distribution functions (PDFs) and are helpful in the treatment of heavy flavours in QCD analyses. We also show angular correlations in multi-jet events at highest center-of-mass energies and compare the measurements to theoretical predictions including higher order parton radiation and coherence effects. Measurements of cross sections of jet and top-quark pair production are in particular sensitive to the gluon distribution in the proton, while the electroweak boson production - inclusive or associated with charm or beauty quarks - gives insight into the flavour separation of the proton sea and to the treatment of heavy quarks in PDF-related studies.


2019 ◽  
Vol 206 ◽  
pp. 01002
Author(s):  
Vladimir Chekelian

Measurements of jet cross sections in neutral current deep-inelastic scattering (NC DIS) using data taken with the H1 detector at HERA are accomplished by the precision measurement of double-differential inclusive jet, dijet and trijet cross sections at low photon virtualities 5.5 < Q2 < 80 GeV2, and by extending previous inclusive jet measurements in the range 150 < Q2 < 15000 GeV2 to low transverse jet momenta 5 < PT < 7 GeV. The strong coupling constant at the Z-boson mass, αs(mZ), is determined in next-to-next-to-leading order (NNLO) QCD using H1 inclusive jet and dijet cross section measurements. Complementary, αs(mZ) is determined together with parton distribution functions of the proton (PDFs) from jet and inclusive DIS data measured by the H1 experiment. The running of the strong coupling is tested at different values of the renormalisation scale and the results are found to be in agreement with the QCD expectations.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
M. V. Garzelli ◽  
L. Kemmler ◽  
S. Moch ◽  
O. Zenaiev

Abstract We present predictions for heavy-quark production at the Large Hadron Collider making use of the $$ \overline{\mathrm{MS}} $$ MS ¯ and MSR renormalization schemes for the heavy-quark mass as alternatives to the widely used on-shell renormalization scheme. We compute single and double differential distributions including QCD corrections at next-to-leading order and investigate the renormalization and factorization scale dependence as well as the perturbative convergence in these mass renormalization schemes. The implementation is based on publicly available programs, MCFM and xFitter, extending their capabilities. Our results are applied to extract the top-quark mass using measurements of the total and differential $$ t\overline{t} $$ t t ¯ production cross-sections and to investigate constraints on parton distribution functions, especially on the gluon distribution at low x values, from available LHC data on heavy-flavor hadro-production.


2006 ◽  
Vol 21 (02) ◽  
pp. 89-109 ◽  
Author(s):  
S. DAWSON ◽  
C. B. JACKSON ◽  
L. REINA ◽  
D. WACKEROTH

We review the present status of the QCD corrected cross-sections and kinematic distributions for the production of a Higgs boson in association with bottom quarks at the Fermilab Tevatron and CERN Large Hadron Collider. Results are presented for the Minimal Supersymmetric Standard Model where, for large tan β, these production modes can be greatly enhanced compared to the Standard Model case. The next-to-leading order QCD results are much less sensitive to the renormalization and factorization scales than the lowest order results, but have a significant dependence on the choice of the renormalization scheme for the bottom quark Yukawa coupling. We also investigate the uncertainties coming from the Parton Distribution Functions and find that these uncertainties can be comparable to the uncertainties from the remaining scale dependence of the next-to-leading order results. We present results separately for the different final states depending on the number of bottom quarks identified.


2021 ◽  
Author(s):  
Kadir Ocalan

Abstract This paper presents high-accuracy predictions for the differential cross sections as a function of the key observable φ*η of the neutral-current Drell-Yan (DY) dilepton production in proton-proton (pp) collisions. The differential distributions for the φ*η are presented by using the state-of-the-art predictions from the combined calculations of fixed-order perturbative QCD corrections at next-to-next-to-leading order (NNLO) accuracy and resummation of large logarithmic terms at next-to-next-to-leading logarithmic (NNLL) and next-to-NNLL (N3LL) accuracies, i.e., NNLO+NNLL and NNLO+N3LL, respectively. The predicted distributions are reported for a thorough set of the DY dilepton invariant mass mll ranges, spanning a wide kinematic region of 50 < mll< 1000 GeV both near and away from the Z-boson mass peak, and rapidity yll ranges in the central detector acceptance region of |yll| < 2.4. The differential φ*η distributions in the wide mll and yll ranges offer stringent tests to assess the reliability of the predictions, where the mll and yll are closely correlated with the parton distribution functions (PDFs) of the incoming partons. The merged predictions through NNLO+N3LL are observed to provide good description of the 13 TeV pp collision data for the φ*η (including the dilepton transverse momentum pll T as well) distributions in almost the entire mll and yll ranges, apart from the intermediate- to high-φ*η region in the lowest mass range 50–76 GeV which is assessed to constitute a challenge for the presented predictions. The merged predictions at NNLO+N3LL are also reported at 14 TeV for the upcoming high-luminosity running era of the LHC, in which increasing amount of data is expected to require more accurate and precise theoretical description. The most recent PDF models MSHT20 and CT18 are tested for the first time in addition to the NNPDF3.1 exploiting the merged φ*η predictions.


2009 ◽  
Vol 24 (06) ◽  
pp. 1069-1086 ◽  
Author(s):  
CRISTINEL DIACONU

Recent progress in the understanding of the nucleon is presented. The unpolarized structure functions are obtained with unprecedented precision from the combined H1 and ZEUS data and are used to extract proton parton distribution functions via NLO QCD fits. The obtained parametrization displays an improved precision, in particular at low Bjorken x, and leads to precise predictions of cross-sections for LHC phenomena. Recent data from proton–antiproton collisions at Tevatron indicate further precise constraints at large Bjorken x. The flavor content of the proton is further studied using final states with charm and beauty in DIS ep and [Formula: see text] collisions. Data from polarized DIS or proton–proton collisions are used to test the spin structure of the proton and to constrain the polarized parton distributions.


2019 ◽  
Vol 2019 ◽  
pp. 1-68 ◽  
Author(s):  
Krzysztof Cichy ◽  
Martha Constantinou

Within the theory of Quantum Chromodynamics (QCD), the rich structure of hadrons can be quantitatively characterized, among others, using a basis of universal nonperturbative functions: parton distribution functions (PDFs), generalized parton distributions (GPDs), transverse momentum dependent parton distributions (TMDs), and distribution amplitudes (DAs). For more than half a century, there has been a joint experimental and theoretical effort to obtain these partonic functions. However, the complexity of the strong interactions has placed severe limitations, and first-principle information on these distributions was extracted mostly from their moments computed in Lattice QCD. Recently, breakthrough ideas changed the landscape and several approaches were proposed to access the distributions themselves on the lattice. In this paper, we review in considerable detail approaches directly related to partonic distributions. We highlight a recent idea proposed by X. Ji on extracting quasidistributions that spawned renewed interest in the whole field and sparked the largest amount of numerical studies within Lattice QCD. We discuss theoretical and practical developments, including challenges that had to be overcome, with some yet to be handled. We also review numerical results, including a discussion based on evolving understanding of the underlying concepts and the theoretical and practical progress. Particular attention is given to important aspects that validated the quasidistribution approach, such as renormalization, matching to light-cone distributions, and lattice techniques. In addition to a thorough discussion of quasidistributions, we consider other approaches: hadronic tensor, auxiliary quark methods, pseudodistributions, OPE without OPE, and good lattice cross-sections. In the last part of the paper, we provide a summary and prospects of the field, with emphasis on the necessary conditions to obtain results with controlled uncertainties.


2005 ◽  
Vol 20 (21) ◽  
pp. 1557-1571
Author(s):  
BURKARD REISERT

An extraction of the parton distributions of the proton by a next-to-leading order QCD fit in the framework of the Standard Model is presented. The fit implements a novel decomposition of the quark species into up- and down-type quark distributions, which is the key to enable a determination of flavor separated parton distributions from a single experiment. The fit is performed on the inclusive unpolarized neutral and charged current cross-section measurements by the H1 collaboration at HERA. The discussion of uncertainties of parton distribution functions is based upon but extends the QCD analysis published together with the H1 data.


Sign in / Sign up

Export Citation Format

Share Document