scholarly journals Innate Immune Sensing of Influenza A Virus

Viruses ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 755
Author(s):  
Gaurav Malik ◽  
Yan Zhou

Influenza virus infection triggers host innate immune response by stimulating various pattern recognition receptors (PRRs). Activation of these PRRs leads to the activation of a plethora of signaling pathways, resulting in the production of interferon (IFN) and proinflammatory cytokines, followed by the expression of interferon-stimulated genes (ISGs), the recruitment of innate immune cells, or the activation of programmed cell death. All these antiviral approaches collectively restrict viral replication inside the host. However, influenza virus also engages in multiple mechanisms to subvert the innate immune responses. In this review, we discuss the role of PRRs such as Toll-like receptors (TLRs), Retinoic acid-inducible gene I (RIG-I), NOD-, LRR-, pyrin domain-containing protein 3 (NLRP3), and Z-DNA binding protein 1 (ZBP1) in sensing and restricting influenza viral infection. Further, we also discuss the mechanisms influenza virus utilizes, especially the role of viral non-structure proteins NS1, PB1-F2, and PA-X, to evade the host innate immune responses.

2016 ◽  
Vol 91 (5) ◽  
Author(s):  
Aitor Nogales ◽  
Luis Martinez-Sobrido ◽  
David J. Topham ◽  
Marta L. DeDiego

ABSTRACT Influenza virus NS1 protein is a nonstructural, multifunctional protein that counteracts host innate immune responses, modulating virus pathogenesis. NS1 protein variability in subjects infected with H3N2 influenza A viruses (IAVs) during the 2010/2011 season was analyzed, and amino acid changes in residues 86, 189, and 194 were found. The consequences of these mutations for the NS1-mediated inhibition of IFN responses and the pathogenesis of the virus were evaluated, showing that NS1 mutations D189N and V194I impaired the ability of the NS1 protein to inhibit general gene expression, most probably because these mutations decreased the binding of NS1 to the cleavage and polyadenylation specificity factor 30 (CPSF30). A recombinant A/Puerto Rico/8/34 (PR8) H1N1 virus encoding the H3N2 NS1-D189N protein was slightly attenuated, whereas the virus encoding the H3N2 NS1-V194I protein was further attenuated in mice. The higher attenuation of this virus could not be explained by differences in the ability of the two NS1 proteins to counteract host innate immune responses, indicating that another factor must be responsible. In fact, we showed that the virus encoding the H3N2 NS1-V194I protein demonstrated a temperature-sensitive (ts) phenotype, providing a most likely explanation for the stronger attenuation observed. As far as we know, this is the first description of a mutation in NS1 residue 194 conferring a ts phenotype. These studies are relevant in order to identify new residues important for NS1 functions and in human influenza virus surveillance to assess mutations affecting the pathogenicity of circulating viruses. IMPORTANCE Influenza viral infections represent a serious public health problem, with influenza virus causing a contagious respiratory disease that is most effectively prevented through vaccination. The multifunctional nonstructural protein 1 (NS1) is the main viral factor counteracting the host antiviral response. Therefore, influenza virus surveillance to identify new mutations in the NS1 protein affecting the pathogenicity of the circulating viruses is highly important. In this work, we evaluated amino acid variability in the NS1 proteins from H3N2 human seasonal viruses and the effect of the mutations on innate immune responses and virus pathogenesis. NS1 mutations D189N and V194I impaired the ability of the NS1 protein to inhibit general gene expression, and recombinant viruses harboring these mutations were attenuated in a mouse model of influenza infection. Interestingly, a virus encoding the H3N2 NS1-V194I protein demonstrated a temperature-sensitive phenotype, further attenuating the virus in vivo.


2019 ◽  
Author(s):  
Chengcai Lai ◽  
Lihui Liu ◽  
Qinghua Liu ◽  
Sijie Cheng ◽  
Keyu Wang ◽  
...  

AbstractAccumulating evidence has shown that long noncoding RNAs (lncRNAs) are involved in several biological processes, including immune responses. However, the role of lncRNAs in antiviral innate immune responses remains largely unexplored. Here, we identify an uncharacterized human lncRNA from influenza A virus (IAV) patients, antivirus and activate neutrophil (AVAN), that is significantly up-regulated upon virus infection. Mechanistically, nuclear lncRNA-AVANpositively regulates the transcription of forkhead box O3A (FOXO3a) by associating with its promoter and inducing chromatin remodeling to promote neutrophil chemotaxis. Furthermore, we also found that cytoplasmic lncRNA-AVANdirectly binds tripartite motif containing 25 (TRIM25) and enhances the association of TRIM25 and Retinoic acid inducible gene-1 proteins (RIG-I) and the ubiquitylation of RIG-I, thereby promoting TRIM25- and RIG-I-mediated antiviral innate immune signaling. More importantly, we enforced the expression of AVAN in transgenic mice and found that it significantly alleviated IAV virulence and virus production. Collectively, these findings highlight the potential clinical implications of lncRNA-AVANas a key positive regulator of the antiviral innate immune response and a promising target for developing broad antiviral therapeutics.


2021 ◽  
Author(s):  
Or Alfi ◽  
Arkadi Yakirevitch ◽  
Ori Wald ◽  
Ori Wandel ◽  
Uzi Izhar ◽  
...  

ABSTRACTThe nasal-mucosa constitutes the primary entry site for respiratory viruses including SARS-CoV-2. While the imbalanced innate immune response of end-stage COVID-19 has been extensively studied, the earliest stages of SARS-CoV-2 infection at the mucosal entry site have remained unexplored. Here we employed SARS-CoV-2 and influenza virus infection in native multi-cell-type human nasal turbinate and lung tissues ex vivo, coupled with genome-wide transcriptional analysis, to investigate viral susceptibility and early patterns of local-mucosal innate immune response in the authentic milieu of the human respiratory tract. SARS-CoV-2 productively infected the nasal turbinate tissues, predominantly targeting respiratory epithelial cells, with rapid increase in tissue-associated viral sub-genomic mRNA, and secretion of infectious viral progeny. Importantly, SARS-CoV-2 infection triggered robust antiviral and inflammatory innate immune responses in the nasal mucosa. The upregulation of interferon stimulated genes, cytokines and chemokines, related to interferon signaling and immune-cell activation pathways, was broader than that triggered by influenza virus infection. Conversely, lung tissues exhibited a restricted innate immune response to SARS-CoV-2, with a conspicuous lack of type I and III interferon upregulation, contrasting with their vigorous innate immune response to influenza virus. Our findings reveal differential tissue-specific innate immune responses in the upper and lower respiratory tract, that are distinct to SARS-CoV-2. The studies shed light on the role of the nasal-mucosa in active viral transmission and immune defense, implying a window of opportunity for early interventions, whereas the restricted innate immune response in early-SARS-CoV-2-infected lung tissues could underlie the unique uncontrolled late-phase lung damage of advanced COVID-19.IMPORTANCEIn order to reduce the late-phase morbidity and mortality of COVID-19, there is a need to better understand and target the earliest stages of SARS-CoV-2 infection in the human respiratory tract. Here we have studied the initial steps of SARS-CoV-2 infection and the consequent innate immune responses within the natural multicellular complexity of human nasal-mucosal and lung tissues. Comparing the global innate response patterns of nasal and lung tissues, infected in parallel with SARS-CoV-2 and influenza virus, we have revealed distinct virus-host interactions in the upper and lower respiratory tract, which could determine the outcome and unique pathogenesis of SARS-CoV-2 infection. Studies in the nasal-mucosal infection model can be employed to assess the impact of viral evolutionary changes, and evaluate new therapeutic and preventive measures against SARS-CoV-2 and other human respiratory pathogens.


2021 ◽  
Author(s):  
Or Alfi ◽  
Arkadi Yakirevitch ◽  
Ori Wald ◽  
Ori Wandel ◽  
Uzi Izhar ◽  
...  

The nasal-mucosa constitutes the primary entry site for respiratory viruses including SARS-CoV-2. While the imbalanced innate immune response of end-stage COVID-19 has been extensively studied, the earliest stages of SARS-CoV-2 infection at the mucosal entry site have remained unexplored. Here we employed SARS-CoV-2 and influenza virus infection in native multi-cell-type human nasal turbinate and lung tissues ex vivo, coupled with genome-wide transcriptional analysis, to investigate viral susceptibility and early patterns of local-mucosal innate immune response in the authentic milieu of the human respiratory tract. SARS-CoV-2 productively infected the nasal turbinate tissues, predominantly targeting respiratory epithelial cells, with rapid increase in tissue-associated viral sub-genomic mRNA, and secretion of infectious viral progeny. Importantly, SARS-CoV-2 infection triggered robust antiviral and inflammatory innate immune responses in the nasal mucosa. The upregulation of interferon stimulated genes, cytokines and chemokines, related to interferon signaling and immune-cell activation pathways, was broader than that triggered by influenza virus infection. Conversely, lung tissues exhibited a restricted innate immune response to SARS-CoV-2, with a conspicuous lack of type I and III interferon upregulation, contrasting with their vigorous innate immune response to influenza virus. Our findings reveal differential tissue-specific innate immune responses in the upper and lower respiratory tract, that are distinct to SARS-CoV-2. The studies shed light on the role of the nasal-mucosa in active viral transmission and immune defense, implying a window of opportunity for early interventions, whereas the restricted innate immune response in early-SARS-CoV-2-infected lung tissues could underlie the unique uncontrolled late-phase lung damage of advanced COVID-19. IMPORTANCE In order to reduce the late-phase morbidity and mortality of COVID-19, there is a need to better understand and target the earliest stages of SARS-CoV-2 infection in the human respiratory tract. Here we have studied the initial steps of SARS-CoV-2 infection and the consequent innate immune responses within the natural multicellular complexity of human nasal-mucosal and lung tissues. Comparing the global innate response patterns of nasal and lung tissues, infected in parallel with SARS-CoV-2 and influenza virus, we have revealed distinct virus-host interactions in the upper and lower respiratory tract, which could determine the outcome and unique pathogenesis of SARS-CoV-2 infection. Studies in the nasal-mucosal infection model can be employed to assess the impact of viral evolutionary changes, and evaluate new therapeutic and preventive measures against SARS-CoV-2 and other human respiratory pathogens.


2014 ◽  
Vol 111 (10) ◽  
pp. 3793-3798 ◽  
Author(s):  
Suki M. Y. Lee ◽  
Kin-Hang Kok ◽  
Martial Jaume ◽  
Timothy K. W. Cheung ◽  
Tsz-Fung Yip ◽  
...  

Toll-like receptors (TLRs) play key roles in innate immune recognition of pathogen-associated molecular patterns of invading microbes. Among the 10 TLR family members identified in humans, TLR10 remains an orphan receptor without known agonist or function. TLR10 is a pseudogene in mice and mouse models are noninformative in this regard. Using influenza virus infection in primary human peripheral blood monocyte-derived macrophages and a human monocytic cell line, we now provide previously unidentified evidence that TLR10 plays a role in innate immune responses following viral infection. Influenza virus infection increased TLR10 expression and TLR10 contributed to innate immune sensing of viral infection leading to cytokine induction, including proinflammatory cytokines and interferons. TLR10 induction is more pronounced following infection with highly pathogenic avian influenza H5N1 virus compared with a low pathogenic H1N1 virus. Induction of TLR10 by virus infection requires active virus replication and de novo protein synthesis. Culture supernatants of virus-infected cells modestly up-regulate TLR10 expression in nonvirus-infected cells. Signaling via TLR10 was activated by the functional RNA–protein complex of influenza virus leading to robust induction of cytokine expression. Taken together, our findings identify TLR10 as an important innate immune sensor of viral infection and its role in innate immune defense and immunopathology following viral and bacterial pathogens deserves attention.


2009 ◽  
Vol 83 (6) ◽  
pp. 2510-2517 ◽  
Author(s):  
Satoshi Kakugawa ◽  
Masayuki Shimojima ◽  
Hideo Goto ◽  
Taisuke Horimoto ◽  
Naoki Oshimori ◽  
...  

ABSTRACT Viral infections induce signaling pathways in mammalian cells that stimulate innate immune responses and affect cellular processes, such as apoptosis, mitosis, and differentiation. Here, we report that the ribosomal protein S6 kinase alpha 3 (RSK2), which is activated through the “classical” mitogen-activated protein kinase pathway, plays a role in innate immune responses to influenza virus infection. RSK2 functions in the regulation of cell growth and differentiation but was not known to play a role in the cellular antiviral response. We have found that knockdown of RSK2 enhanced viral polymerase activity and growth of influenza viruses. Influenza virus infection stimulates NK-κB- and beta interferon-dependent promoters. This stimulation was reduced in RSK2 knockdown cells, suggesting that RSK2 executes its effect through innate immune response pathways. Furthermore, RSK2 knockdown suppressed influenza virus-induced phosphorylation of the double-stranded RNA-activated protein kinase PKR, a known antiviral protein. These findings establish a role for RSK2 in the cellular antiviral response.


2020 ◽  
Vol 15 (7) ◽  
pp. 441-453
Author(s):  
Ana Vazquez-Pagan ◽  
Rebekah Honce ◽  
Stacey Schultz-Cherry

Pregnant women are among the individuals at the highest risk for severe influenza virus infection. Infection of the mother during pregnancy increases the probability of adverse fetal outcomes such as small for gestational age, preterm birth and fetal death. Animal models of syngeneic and allogeneic mating can recapitulate the increased disease severity observed in pregnant women and are used to define the mechanism(s) of that increased severity. This review focuses on influenza A virus pathogenesis, the unique immunological landscape during pregnancy, the impact of maternal influenza virus infection on the fetus and the immune responses at the maternal–fetal interface. Finally, we summarize the importance of immunization and antiviral treatment in this population and highlight issues that warrant further investigation.


2021 ◽  
Author(s):  
Fabrice Cognasse ◽  
Kathryn Hally ◽  
Sebastien Fauteux-Daniel ◽  
Marie-Ange Eyraud ◽  
Charles-Antoine Arthaud ◽  
...  

AbstractAside from their canonical role in hemostasis, it is increasingly recognized that platelets have inflammatory functions and can regulate both adaptive and innate immune responses. The main topic this review aims to cover is the proinflammatory effects and side effects of platelet transfusion. Platelets prepared for transfusion are subject to stress injury upon collection, preparation, and storage. With these types of stress, they undergo morphologic, metabolic, and functional modulations which are likely to induce platelet activation and the release of biological response modifiers (BRMs). As a consequence, platelet concentrates (PCs) accumulate BRMs during processing and storage, and these BRMs are ultimately transfused alongside platelets. It has been shown that BRMs present in PCs can induce immune responses and posttransfusion reactions in the transfusion recipient. Several recent reports within the transfusion literature have investigated the concept of platelets as immune cells. Nevertheless, current and future investigations will face the challenge of encompassing the immunological role of platelets in the scope of transfusion.


Sign in / Sign up

Export Citation Format

Share Document