scholarly journals Longitudinal Analysis of Peripheral and Colonic CD161+ CD4+ T Cell Dysfunction in Acute HIV-1 Infection and Effects of Early Treatment Initiation

Viruses ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1426
Author(s):  
Kerri Lal ◽  
Yuwadee Phuang-Ngern ◽  
Suchada Suhkumvittaya ◽  
Edwin Leeansyah ◽  
Aljawharah Alrubayyi ◽  
...  

CD161 expression on CD4+ T cells is associated with a Th17 functional phenotype, as well as with an innate capacity to respond to interleukin (IL)-12 and IL-18 without T cell receptor (TCR) stimulation. Chronic HIV-1 infection is associated with loss of the CD161+ CD4 T cell population, and non-human primate studies suggest that their depletion is associated with disease progression. However, the dynamics of the CD161+ CD4+ T cell population during acute HIV-1 infection remains unknown. In this study, we characterize peripheral blood CD161+ CD4+ T cells in detail, and examine how they are affected during the earliest stages of HIV-1 infection. Unbiased surface proteome screening and principal component analysis indicated that CD161+ CD4+ T cells are relatively phenotypically homogeneous between donors, and are intermediates between conventional CD4 T cells and innate-like T cells. In acute untreated HIV-1 infection, the circulating CD161+ CD4+ T cell population decreased in frequency, as did absolute cell counts starting from peak viral load, with elevated levels of activation and exhaustion markers expressed throughout acute HIV-1 infection. The capacity of these cells to respond to stimulation with IL-12 and IL-18 was also reduced. Early initiation of anti-retroviral treatment (ART) during acute HIV-1 infection restored the functionality of peripheral blood CD161+ CD4+ T cells, but not their frequency. In contrast, early ART initiation prevented the decline of colonic CD161+ CD4+ T cells that otherwise started during acute infection. Furthermore, loss of peripheral and colonic CD161+ CD4+ T cells in untreated infection was associated with levels of viral load. These results suggest that acute HIV-1 infection has profound effects on the CD161+ CD4+ T cell population that could not be completely prevented by the initiation of ART.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3106-3106
Author(s):  
Sachi Tsunemi ◽  
Tsuyoshi Iwasaki ◽  
Takehito Imado ◽  
Satoshi Higasa ◽  
Eizo Kakishita ◽  
...  

Abstract Human immunodeficiency virus (HIV) infection is characterized by marked defects in CD4+ helper T cell (Th) functions that commonly progress to a substantial decline in peripheral CD4+ T cell counts. However, the mechanisms responsible for the loss of Th functions in HIV-infected patients independent of CD4+ T cell counts remains unclear. CD4+CD25+ regulatory T cells (T Reg) are essential for down-regulation of both autoreactive and alloreactive T cells. Therefore, we decided to investigate the role of T Reg in immune status of HIV-infected patients. We examined the expression of cell surface CD25, cytoplasmic IL-4 and cytoplasmic IFN-gamma in peripheral blood CD4+ T cells from both healthy controls (n=9) and HIV-infected patients (n=43). We also compared T Reg functions between the 2 groups. CD4+CD25+ T Reg isolated from both HIV-infected patients and healthy controls strongly expressed CD45RO, HLA-DR, and FoxP3, and suppressed the proliferation of CD4+CD25− T cells, suggesting that CD4+CD25+ T cells from both healthy controls and HIV-infected patients possess phenotypic and functional characteristics of Treg. CD4+CD25high T cells are a subset of circulating CD4+CD25+ T cells in normal humans and exhibit strong in vitro regulatory functions similar to those reported for murine CD4+CD25+ T Reg. We measured the frequency of CD4+CD25high T Reg by analysis of surface CD25 on CD4+ T cells in peripheral blood samples. We also examined Th1 and Th2 frequencies by analysis of cytoplasmic IFN-gamma and IL-4 levels in CD4+ T cells. T Reg from HIV-infected patients with detectable plasma HIV-1 RNA showed a statistically significant increase in CD4+CD25high cell frequency (p<0.05) compared to healthy controls, with T Reg frequencies inversely proportional to CD4+ T cell numbers (p<0.01). However, in HIV-infected patients with undetectable plasma HIV-RNA, frequencies of CD4+CD25high T Reg were not increased and not related to CD4+ T cell numbers. In both HIV-infected patient groups, T Reg frequency was inversely related to Th1 frequency (detectable: p<0.05, undetectable: p<0.001), but positively related to Th2 frequency (detectable: p<0.01, undetectable: p<0.001). Our results indicate that increased frequencies of peripheral blood T Reg were related to disease progression as measured by detectable plasma HIV-1 RNA, decreased peripheral blood CD4+ T cell counts, and polarization toward Th2 immune responses in HIV-infected patients. HIV infection may lead to induction of T reg that inhibit antiviral immune responses, resulting in the progression of the disease. Manipulation of T Reg could help restore antiviral immune responses in HIV infection, and prevent the progression of HIV infection.


2004 ◽  
Vol 200 (6) ◽  
pp. 761-770 ◽  
Author(s):  
Saurabh Mehandru ◽  
Michael A. Poles ◽  
Klara Tenner-Racz ◽  
Amir Horowitz ◽  
Arlene Hurley ◽  
...  

Given its population of CCR5-expressing, immunologically activated CD4+ T cells, the gastrointestinal (GI) mucosa is uniquely susceptible to human immunodeficiency virus (HIV)-1 infection. We undertook this study to assess whether a preferential depletion of mucosal CD4+ T cells would be observed in HIV-1–infected subjects during the primary infection period, to examine the anatomic subcompartment from which these cells are depleted, and to examine whether suppressive highly active antiretroviral therapy could result in complete immune reconstitution in the mucosal compartment. Our results demonstrate that a significant and preferential depletion of mucosal CD4+ T cells compared with peripheral blood CD4+ T cells is seen during primary HIV-1 infection. CD4+ T cell loss predominated in the effector subcompartment of the GI mucosa, in distinction to the inductive compartment, where HIV-1 RNA was present. Cross-sectional analysis of a cohort of primary HIV-1 infection subjects showed that although chronic suppression of HIV-1 permits near-complete immune recovery of the peripheral blood CD4+ T cell population, a significantly greater CD4+ T cell loss remains in the GI mucosa, despite up to 5 yr of fully suppressive therapy. Given the importance of the mucosal compartment in HIV-1 pathogenesis, further study to elucidate the significance of the changes observed here is critical.


2016 ◽  
Vol 1 (2) ◽  
pp. 260 ◽  
Author(s):  
Yolanda D. Mahnke ◽  
Kipper Fletez-Brant ◽  
Irini Sereti ◽  
Mario Roederer

Background. Highly active antiretroviral therapy induces clinical benefits to HIV-1 infected individuals, which can be striking in those with progressive disease. Improved survival and decreased incidence of opportunistic infections go hand in hand with a suppression of the plasma viral load, an increase in peripheral CD4+ T-cell counts, as well as a reduction in the activation status of both CD4+ and CD8+ T cells.Methods. We investigated T-cell dynamics during ART by polychromatic flow cytometry in total as well as in HIV-1-specific CD4+ and CD8+ T cells. We also measured gene expression by single cell transcriptomics to assess functional state.Results. The cytokine pattern of HIV-specific CD8+ T cells was not altered after ART, though their magnitude decreased significantly as the plasma viral load was suppressed to undetectable levels. Importantly, while CD4+ T cell numbers increased substantially during the first year, the population did not normalize: the increases were largely due to expansion of mucosal-derived CCR4+ CD4+ TCM; transcriptomic analysis revealed that these are not classical Th2-type cells.Conclusion. The apparent long-term normalization of CD4+ T-cell numbers following ART does not comprise a normal balance of functionally distinct cells, but results in a dramatic Th2 shift of the reconstituting immune system.


2018 ◽  
Vol 92 (20) ◽  
Author(s):  
Alessandra Noto ◽  
Francesco A. Procopio ◽  
Riddhima Banga ◽  
Madeleine Suffiotti ◽  
Jean-Marc Corpataux ◽  
...  

ABSTRACTA recent study conducted in blood has proposed CD32 as the marker identifying the “elusive” HIV reservoir. We have investigated the distribution of CD32+CD4 T cells in blood and lymph nodes (LNs) of HIV-1-uninfected subjects and viremic untreated and long-term-treated HIV-1-infected individuals and their relationship with PD-1+CD4 T cells. The frequency of CD32+CD4 T cells was increased in viremic compared to treated individuals in LNs, and a large proportion (up to 50%) of CD32+cells coexpressed PD-1 and were enriched within T follicular helper (Tfh) cells. We next investigated the role of LN CD32+CD4 T cells in the HIV reservoir. Total HIV DNA was enriched in CD32+and PD-1+CD4 T cells compared to CD32−and PD-1−cells in both viremic and treated individuals, but there was no difference between CD32+and PD-1+cells. There was no enrichment of latently infected cells with inducible HIV-1 in CD32+versus PD-1+cells in antiretroviral therapy (ART)-treated individuals. HIV-1 transcription was then analyzed in LN memory CD4 T cell populations sorted on the basis of CD32 and PD-1 expression. CD32+PD-1+CD4 T cells were significantly enriched in cell-associated HIV RNA compared to CD32−PD-1−(averages of 5.2-fold in treated individuals and 86.6-fold in viremics), CD32+PD-1−(2.2-fold in treated individuals and 4.3-fold in viremics), and CD32−PD-1+(2.2-fold in ART-treated individuals and 4.6-fold in viremics) cell populations. Similar levels of HIV-1 transcription were found in CD32+PD-1−and CD32−PD-1+CD4 T cells. Interestingly, the proportion of CD32+and PD-1+CD4 T cells negatively correlated with CD4 T cell counts and length of therapy. Therefore, the expression of CD32 identifies, independently of PD-1, a CD4 T cell population with persistent HIV-1 transcription and coexpression of CD32 and PD-1, the CD4 T cell population with the highest levels of HIV-1 transcription in both viremic and treated individuals.IMPORTANCEThe existence of long-lived latently infected resting memory CD4 T cells represents a major obstacle to the eradication of HIV infection. Identifying cell markers defining latently infected cells containing replication-competent virus is important in order to determine the mechanisms of HIV persistence and to develop novel therapeutic strategies to cure HIV infection. We provide evidence that PD-1 and CD32 may have a complementary role in better defining CD4 T cell populations infected with HIV-1. Furthermore, CD4 T cells coexpressing CD32 and PD-1 identify a CD4 T cell population with high levels of persistent HIV-1 transcription.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Jean-Philippe Herbeuval ◽  
Nikaïa Smith ◽  
Jacques Thèze

Despite variability, the majority of HIV-1-infected individuals progress to AIDS characterized by high viral load and massive CD4+ T-cell depletion. However, there is a subset of HIV-1-positive individuals that does not progress and spontaneously maintains an undetectable viral load. This infrequent patient population is defined as HIV-1 controllers (HIV controllers), and represents less than 1% of HIV-1-infected patients. HIV-1-specific CD4+ T cells and the pool of central memory CD4+ T cells are also preserved despite immune activation due to HIV-1 infection. The majority of HIV controllers are also defined by the absence of massive CD4+ T-cell depletion, even after 10 years of infection. However, the mechanisms involved in protection against HIV-1 disease progression have not been elucidated yet. Controllers represent a heterogeneous population; we describe in this paper some common characteristics concerning innate immune response and CD4+ T cells of HIV controllers.


2020 ◽  
Author(s):  
Alex Kayongo ◽  
Derrick Semugenze ◽  
Mary Nantongo ◽  
Fred Semitala ◽  
Anxious Jackson Niwaha ◽  
...  

Abstract Background: World over, there are antiretroviral therapy naïve individuals infected with HIV who maintain their CD4+T cell count above 500 cells/µl over 7-10 years and viral loads well controlled below undetectable levels (termed elite controllers, ECs) or at least 2,000 copies/mL (termed viremic controllers, VCs) for at least 12 months. Mechanisms responsible for HIV control in these individuals have not been fully elucidated. We hypothesized that CD4+T cells from elite and viremic controllers are naturally resistant to HIV-1 infection by blocking R5-tropic viral entry. We conducted a case-controlled study in which archived peripheral blood from 31 ECs/VCs and 15 progressors were investigated using in vitro HIV-1 infectivity assays. Results: Briefly, we purified CD4+T cells from peripheral blood using EasySep CD4+ positive selection kit followed by CD4+T cell activation using IL-2, anti-CD28 and anti-CD3. Three days post-activation, CD4+T cells were spinoculated and co-cultured with vesicular stomatitis virus G (VSV-G)-pseudotyped HIV, R5 (ADA-enveloped)- and X4 (NL4.3-enveloped v)-tropic HIV-1. Three days post infection, we quantified and compared the percentage infection of CD4+T cells in cases and controls. We demonstrate that a subgroup of Ugandan elite and viremic controllers possess CD4+T cells that are specifically resistant to R5-tropic virus, remaining fully susceptible to X4-tropic virus. Conclusion: Our study suggests that a subgroup of Ugandan elite and viremic controllers naturally control HIV-1 infection by blocking R5-tropic viral entry. Further research is needed to explore mechanisms of HIV control in the African population.


2018 ◽  
Author(s):  
Alessandra Noto ◽  
Francesco A. Procopio ◽  
Riddhima Banga ◽  
Madeleine Suffiotti ◽  
Jean-Marc Corpataux ◽  
...  

ABSTRACTA recent study conducted in blood has proposed CD32 as the marker identifying the ‘elusive’ HIV reservoir. We have investigated the distribution of CD32+CD4 T cells in blood and lymph nodes(LNs) of healthy HIV-1 uninfected, viremic untreated and long-term treated HIV-1 infected individuals and their relationship with PD-1+CD4 T cells. The frequency of CD32+CD4 T cells was increased in viremic as compared to treated individuals in LNs and a large proportion(up to 50%) of CD32+cells co-expressed PD-1 and were enriched within T follicular helper cells(Tfh) cells. We next investigated the role of LN CD32+CD4 T cells in the HIV reservoir. Total HIV DNA was enriched in CD32+and PD-1+CD4 T cells as compared to CD32-and PD-1-cells in both viremic and treated individuals but there was no difference between CD32+and PD-1+cells. There was not enrichment of latently infected cells with inducible HIV-1 in CD32+versus PD-1+cells in ART treated individuals. HIV-1 transcription was then analyzed in LN memory CD4 T cell populations sorted on the basis of CD32 and PD-1 expression. CD32+PD-1+CD4 T cells were significantly enriched in cell associated HIV RNA as compared to CD32-PD-1-(average 5.2 fold in treated and 86.6 fold in viremics), to CD32+PD-1-(2.2 fold in treated and 4.3 fold in viremics) and to CD32-PD-1+cell populations(2.2 fold in ART treated and 4.6 fold in viremics). Similar levels of HIV-1 transcription were found in CD32+PD-1-and CD32-PD-1+CD4 T cells. Interestingly, the proportion of CD32+and PD-1+CD4 T cells negatively correlated with CD4 T cell counts and length of therapy while positively correlated with viremia. Therefore, the expression of CD32 identifies, independently of PD-1, a CD4 T cell population with persistent HIV-1 transcription and CD32 and PD-1 co-expression the CD4 T cell population with the highest levels of HIV-1 transcription in both viremic and treated individuals.ImportanceThe existence of long-lived latently infected resting memory CD4 T cells represents a major obstacle to the eradication of HIV infection. Identifying cell markers defining latently infected cells containing replication competent virus is important in order to determine the mechanisms of HIV persistence and to develop novel therapeutic strategies to cure HIV infection. We provide evidence that PD-1 and CD32 may have a complementary role in better defining CD4 T cell populations infected with HIV-1. Furthermore, CD4 T cells co-expressing CD32 and PD-1 identify a CD4 T cell population with high levels of persistent HIV-1 transcription.


2016 ◽  
Vol 90 (22) ◽  
pp. 10423-10430 ◽  
Author(s):  
Heather A. Prentice ◽  
Hailin Lu ◽  
Matthew A. Price ◽  
Anatoli Kamali ◽  
Etienne Karita ◽  
...  

ABSTRACT In individuals with HIV-1 infection, depletion of CD4 + T cells is often accompanied by a malfunction of CD8 + T cells that are persistently activated and/or exhausted. While the dynamics and correlates of CD4 counts have been well documented, the same does not apply to CD8 counts. Here, we examined the CD8 counts in a cohort of 497 Africans with primary HIV-1 infection evaluated in monthly to quarterly follow-up visits for up to 3 years in the absence of antiretroviral therapy. Statistical models revealed that (i) CD8 counts were relatively steady in the 3- to 36-month period of infection and similar between men and women; (ii) neither geography nor heterogeneity in the HIV-1 set-point viral load could account for the roughly 10-fold range of CD8 counts in the cohort ( P > 0.25 in all tests); and (iii) factors independently associated with relatively high CD8 counts included demographics (age ≤ 40 years, adjusted P = 0.010) and several human leukocyte antigen class I (HLA-I) alleles, including HLA-A*03:01 ( P = 0.013), B*15:10 ( P = 0.007), and B*58:02 ( P < 0.001). Multiple sensitivity analyses provided supporting evidence for these novel relationships. Overall, these findings suggest that factors associated with the CD8 count have little overlap with those previously reported for other HIV-1-related outcome measures, including viral load, CD4 count, and CD4/CD8 ratio. IMPORTANCE Longitudinal data from 497 HIV-1 seroconverters allowed us to systematically evaluate the dynamics and correlates of CD8 + T-cell counts during untreated primary HIV-1 infection in eastern and southern Africans. Our findings suggest that individuals with certain HLA-I alleles, including A*03 (exclusively A*03:01), persistently maintain relatively high CD8 counts following HIV-1 infection, a finding which may offer an intriguing explanation for the recently reported, negative association of A*03 with HIV-1-specific, broadly neutralizing antibody responses. In future studies, attention to HLA-I genotyping data may benefit in-depth understanding of both cellular and humoral immunity, as well as the intrinsic balances of these types of immunity, especially in settings where there is emerging evidence of antagonism between the two arms of adaptive immunity.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 412-412
Author(s):  
Gian-Paolo Rizzardi ◽  
Silvia Nozza ◽  
Lucia Turchetto ◽  
Alexandre Harari ◽  
Giuseppe Tambussi ◽  
...  

Abstract Several reasons warrant the development of innovative therapeutic strategies for HIV/AIDS. These include the inability of highly active antiretroviral therapy (HAART) to eradicate the virus, the HAART-induced severe long-term toxicity occurring in patients, the development of HAART-resistant HIV-1 strains in the host, and the lack of an efficacious vaccine. Genetic engineering of hematopoietic stem cells (HSC) combined with nonmyeloablative conditioning proved safety and efficacy in the treatment of adenosine deaminase-deficient severe combined immunodeficiency. The feasibility of such an approach in HIV-1 infection remains, however, to be determined. In an open-label prospective trial, 18 patients with HIV-1 infection (mean±SE age 35.7±1.2, range 18.9–40; HAART since at least 3 months; CD4+ T cell counts &gt;200/μl) have been enrolled in a HSC retroviral vector gene therapy trial using RevM10 and polAS as anti-HIV genes. Nine patients received fresh transduced CD34+ cells and all study treatments, including CD34+ cell mobilisation with G-CSF (10 μg/kg/day for 5 days), CD34+ cell collection through aphaeresis, and nonmyeloablative conditioning (1.8 g/m2 cyclophosphamide [CY]), while 9 did not undergo all study phases. All patients have been followed-up for at least 48 weeks. Mean±SE baseline CD4+ T cell counts were 577±42, while plasma HIV-1 RNA levels (VL) were below the limit of detection (80 copies/ml) of the assay (Nasba Organon) in 9 out of 18 patients. CD34+ cells were efficiently mobilized and collected from patients with HIV-1 infection, achieving 4.42±0.64 x 106 CD34+ cells/kg after purification (CliniMACS, Miltenyi Biotec), and 3.93±1.2 x 106 viable CD34+ cells/kg in the infusion product, 30% of which were transduced CD34+ cells. It is worth noting that 1) effective VL suppression significantly increased the yields of mobilization, purification and transduction processes, and 2) peripheral blood CD34+ cell counts before aphaeresis (mean, 72 cells/μl) predicted the number of viable CD34+ cells infused (β 0.722, 95% CI 0.007–0.092, P=0.028, regression analysis), and a cut-off value &gt;30 CD34+ cells/μl predicted the success of all procedures (P=0.018, χ2 analysis, Fisher’s exact test). Gene marking levels, predicted by the number of transduced cells infused, were detectable in all patients, though they significantly decreased over time. CY conditioning caused a marked decrease in CD4+ T cell counts, restored over long-term follow-up. This recovery correlated with levels of CD4+ TCR-rearrangement excision circles and CD4+CD45RA+CCR7+ naïve T cells, indicating thymus regeneration capacity in &gt;30-year-old patients with HIV-1 infection. Importantly, CMV-specific IL-2- and IFN- γ-secreting CD4+CD69+ T cells were able to expand while no clinically relevant CMV reactivation occurred; moreover, proportions of IL-2, IL-2/IFN- γ, and IFN-γ-secreting HSV, TT, and EBV-specific CD4+ T cells were not altered by CY over time. These data indicate that effective stem cell gene transfer is feasible in patients with HIV-1 infection, and suggest the use of non-lymphocyte-toxic conditioning regimen, such as busulfan.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5156-5156
Author(s):  
Zonghong Shao ◽  
Yue Ren ◽  
Rong Fu

Abstract Objective To explore the global DNA methylation and the expression of regulatory genes for methylation in CD4 + T cells of the patients with immune related pancytopenia (IRP) and explore the role of methylation in pathogenesis of IRP. Methods Thirty IRP patients (untreated, n=15; remission, n=15) and 15 healthy donors as controls were enrolled from December 2012 to December 2013. CD4+ T cells were sorted by immunomagnetic separation. The global DNA methylation was tested with enzyme-linked immunosorbent assay (ELISA). The mRNA levels of DNA methylation-related regulating genes, DNA methyltransferases (DNMTs) and methylated CpG binding proteins (MBDs), were measured by real-time quantitative polymerase chain reaction (RT-PCR). Results The level of global DNA methylation in peripheral blood CD4+ T cells of untreated IRP patients (3.525%±2.046%)and remission patients (4.790%±1.471%) were significantly lower than that of normal controls (10.101%±3.449%) respectively (both P<0.05). DNMT3b mRNA level of untreated IRP patients (1.332±0.785) was significantly lower than that of normal controls (2.077±1.059) in CD4+T cells (P<0.05). The mRNA expression of MBD2 was significantly higher in CD4+ T cells from untreated and remission IRP patients (2.999±1.601, 2.055±1.576) than that in controls (0.581±0.247) (both P<0.05). The MBD4 mRNA level was significantly higher in CD4+ T cells from untreated IRP patients (2.736±2.719) compared to that in normal controls (1.167±1.006) (p<0.05). DNMT3b mRNA expression and CD4+ T cell DNA methylation to be positive correlated within IRP patients (r=0.569, p<0.01). The MBD2 mRNA expression negatively correlated with CD4+ T cell DNA methylation and the ratio of Th1/Th2 (r=-0.763, p<0.001; r = -0.652, p<0.05). The global methylation of CD4+ T cells negatively related to the ratio of CD5+ B cells (r= -0.439, p<0.05). Conclusions The globe DNA hypomethylation and abnormal expression of DNA methylation-related enzymes in peripheral blood CD4+ T cells may be related with the pathogenesis of IRP. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document