scholarly journals Human Astroviruses: A Tale of Two Strains

Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 376
Author(s):  
Virginia Hargest ◽  
Amy E. Davis ◽  
Shaoyuan Tan ◽  
Valerie Cortez ◽  
Stacey Schultz-Cherry

Since the 1970s, eight closely related serotypes of classical human astroviruses (HAstV) have been associated with gastrointestinal illness worldwide. In the late 2000s, three genetically unique human astrovirus clades, VA1-VA3, VA2-VA4, and MLB, were described. While the exact disease associated with these clades remains to be defined, VA1 has been associated with central nervous system infections. The discovery that VA1 could be grown in cell culture, supports exciting new studies aimed at understanding viral pathogenesis. Given the association of VA1 with often lethal CNS infections, we tested its susceptibility to the antimicrobial drug, nitazoxanide (NTZ), which we showed could inhibit classical HAstV infections. Our studies demonstrate that NTZ inhibited VA1 replication in Caco2 cells even when added at 12 h post-infection, which is later than in HAstV-1 infection. These data led us to further probe VA1 replication kinetics and cellular responses to infection in Caco-2 cells in comparison to the well-studied HAstV-1 strain. Overall, our studies highlight that VA1 replicates more slowly than HAstV-1 and elicits significantly different cellular responses, including the inability to disrupt cellular junctions and barrier permeability.

2019 ◽  
Vol 13 (1) ◽  
Author(s):  
Georgia Koukou ◽  
Sandra Niendorf ◽  
Britt Hornei ◽  
Jan-U Schlump ◽  
Andreas C. Jenke ◽  
...  

Abstract Background Until today, classic human astroviruses have not been associated with central nervous system infections in immunocompetent patients. Case presentation A 16-month-old Caucasian girl presented with repetitive generalized seizures with a 4-day history of watery diarrhea, which had already gradually improved. Initially, the prolonged seizures ceased after systemic midazolam treatment and were thought to be fever associated. However, her mental status remained altered, and after seizure recurrence, she was transferred to our pediatric intensive care unit. Seizure control was achieved by a combination of high-dose levetiracetam and phenobarbital, but she remained unconscious. An electroencephalogram at this time revealed generalized high voltage theta activity. All laboratory analyses, including extended blood and cerebrospinal fluid analyses, and a brain magnetic resonance imaging were normal. On day 4, the child gradually became conscious, but was very agitated and not able to walk. Since an electroencephalogram at this time still revealed generalized high voltage theta activity, although she had not received sedative medications for 72 hours, she was diagnosed as having encephalopathy. At that time, results of diagnostic testing of the stool sample were positive for classic astrovirus infection, and we decided to analyze the initially obtained cerebrospinal fluid for astrovirus as well. Cerebrospinal fluid was also found positive for human astrovirus. Sequencing analysis revealed a classic astrovirus genotype 1 with exactly the same nucleotide sequence as in the feces. Clinically, the child gradually improved and was discharged on day 9. Conclusions Whereas the new human astrovirus subtypes have been recently associated with central nervous system infection, this is the first case of encephalitis in an immunocompetent child due to classic human astrovirus. Considering that classic human astroviruses are the third most common etiological agents of viral gastroenteritis in children, we believe that human astroviruses as causative agents for central nervous system infections should be considered more often, especially in children and infants with preceding gastroenteritis.


2016 ◽  
Vol 90 (18) ◽  
pp. 8212-8225 ◽  
Author(s):  
Matthew J. Gorman ◽  
Subhajit Poddar ◽  
Michael Farzan ◽  
Michael S. Diamond

ABSTRACTThe interferon-induced transmembrane protein (IFITM) family of proteins inhibit infection of several different enveloped viruses in cell culture by virtue of their ability to restrict entry and fusion from late endosomes. As few studies have evaluated the importance ofIfitm3 in vivoin restricting viral pathogenesis, we investigated its significance as an antiviral gene against West Nile virus (WNV), an encephalitic flavivirus, in cells and mice.Ifitm3−/−mice were more vulnerable to lethal WNV infection, and this was associated with greater virus accumulation in peripheral organs and central nervous system tissues. As no difference in viral burden in the brain or spinal cord was observed after direct intracranial inoculation, Ifitm3 likely functions as an antiviral protein in nonneuronal cells. Consistent with this,Ifitm3−/−fibroblasts but not dendritic cells resulted in higher yields of WNV in multistep growth analyses. Moreover, transcomplementation experiments showed that Ifitm3 inhibited WNV infection independently of Ifitm1, Ifitm2, Ifitm5, and Ifitm6. Beyond a direct effect on viral infection in cells, analysis of the immune response in WNV-infectedIfitm3−/−mice showed decreases in the total number of B cells, CD4+T cells, and antigen-specific CD8+T cells. Finally, bone marrow chimera experiments demonstrated that Ifitm3 functioned in both radioresistant and radiosensitive cells, as higher levels of WNV were observed in the brain only when Ifitm3 was absent from both compartments. Our analyses suggest that Ifitm3 restricts WNV pathogenesis likely through multiple mechanisms, including the direct control of infection in subsets of cells.IMPORTANCEAs part of the mammalian host response to viral infections, hundreds of interferon-stimulated genes (ISGs) are induced. The inhibitory activity of individual ISGs varies depending on the specific cell type and viral pathogen. Among ISGs, the genes encoding interferon-induced transmembrane protein (IFITM) have been reported to inhibit multiple families of viruses in cell culture. However, few reports have evaluated the impact ofIFITMgenes on viral pathogenesisin vivo. In this study, we characterized the antiviral activity of Ifitm3 against West Nile virus (WNV), an encephalitic flavivirus, using mice with a targeted gene deletion ofIfitm3. Based on extensive virological and immunological analyses, we determined that Ifitm3 protects mice from WNV-induced mortality by restricting virus accumulation in peripheral organs and, subsequently, in central nervous system tissues. Our data suggest that Ifitm3 restricts WNV pathogenesis by multiple mechanisms and functions in part by controlling infection in different cell types.


2017 ◽  
Vol 91 (19) ◽  
Author(s):  
Andrew B. Janowski ◽  
Irma K. Bauer ◽  
Lori R. Holtz ◽  
David Wang

ABSTRACT Astrovirus VA1/HMO-C (VA1; mamastrovirus 9) is a recently discovered astrovirus genotype that is divergent from the classic human astroviruses (mamastrovirus 1). The gastrointestinal tract is presumed to be the primary site of infection and pathogenicity for astroviruses. However, VA1 has been independently detected in brain tissue of five cases of human encephalitis. Studies of the pathogenicity of VA1 are currently impossible because there are no reported cell culture systems or in vivo models that support VA1 infection. Here, we describe successful propagation of VA1 in multiple human cell lines. The initial inoculum, a filtered clinical stool sample from the index gastroenteritis case cluster that led to the discovery of VA1, was first passaged in Vero cells. Serial blind passage in Caco-2 cells yielded increasing copies of VA1 RNA, and multistep growth curves demonstrated a >100-fold increase in VA1 RNA 72 h after inoculation. The full-length genomic and subgenomic RNA strands were detected by Northern blotting, and crystalline lattices of viral particles of ∼26-nm diameter were observed by electron microscopy in infected Caco-2 cells. Unlike other human astrovirus cell culture systems, which require addition of exogenous trypsin for continued propagation, VA1 could be propagated equally well with or without the addition of trypsin. Furthermore, VA1 was sensitive to the type I interferon (IFN-I) response, as VA1 RNA levels were reduced by pretreatment of Caco-2 cells with IFN-β1a. The ability to propagate VA1 in cell culture will facilitate studies of the neurotropism and neuropathogenesis of VA1. IMPORTANCE Astroviruses are an emerging cause of central nervous system infections in mammals, and astrovirus VA1/HMO-C is the most prevalent astrovirus in cases of human encephalitis. This virus has not been previously propagated, preventing elucidation of the biology of this virus. We describe the first cell culture system for VA1, a key step necessary for the study of its ability to cause disease.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 979
Author(s):  
Lena Meyer ◽  
Kevin Delgado-Cunningham ◽  
Nicholas Lorig-Roach ◽  
Jordan Ford ◽  
Rebecca M. DuBois

Human astroviruses are an important cause of viral gastroenteritis globally, yet few studies have investigated the serostatus of adults to establish rates of previous infection. Here, we applied biolayer interferometry immunosorbent assay (BLI-ISA), a recently developed serosurveillance technique, to measure the presence of blood plasma IgG antibodies directed towards the human astrovirus capsid spikes from serotypes 1–8 in a cross-sectional sample of a United States adult population. The seroprevalence rates of IgG antibodies were 73% for human astrovirus serotype 1, 62% for serotype 3, 52% for serotype 4, 29% for serotype 5, 27% for serotype 8, 22% for serotype 2, 8% for serotype 6, and 8% for serotype 7. Notably, seroprevalence rates for capsid spike antigens correlate with neutralizing antibody rates determined previously. This work is the first seroprevalence study evaluating all eight classical human astrovirus serotypes.


1980 ◽  
Vol 96 (3) ◽  
pp. 559-563 ◽  
Author(s):  
Jonathan I. Singer ◽  
Philip R. Maur ◽  
John P. Riley ◽  
Pamela Burger Smith

2001 ◽  
Vol 43 (12) ◽  
pp. 1031-1039 ◽  
Author(s):  
J. Teixeira ◽  
R. Zimmerman ◽  
J. Haselgrove ◽  
L. Bilaniuk ◽  
J. Hunter

Sign in / Sign up

Export Citation Format

Share Document