scholarly journals IFNα and β Mediated JCPyV Suppression through C/EBPβ-LIP Isoform

Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1937
Author(s):  
Dana May ◽  
Anna Bellizzi ◽  
Workineh Kassa ◽  
John M. Cipriaso ◽  
Maurizio Caocci ◽  
...  

Polyomavirus JC (JCPyV) causes the demyelinating disease progressive multifocal leukoencephalopathy (PML). JCPyV infection is very common in childhood and, under conditions of severe immunosuppression, JCPyV may reactivate to cause PML. JC viral proteins expression is regulated by the JCPyV non-coding control region (NCCR), which contains binding sites for cellular transcriptional factors which regulate JCPyV transcription. Our earlier studies suggest that JCPyV reactivation occurs within glial cells due to cytokines such as TNF-α which stimulate viral gene expression. In this study, we examined interferon-α (IFNα) or β (IFNβ) which have a negative effect on JCPyV transcriptional regulation. We also showed that these interferons induce the endogenous liver inhibitory protein (LIP), an isoform of CAAT/enhancer binding protein beta (C/EBPβ). Treatment of glial cell line with interferons increases the endogenous level of C/EBPβ-LIP. Furthermore, we showed that the negative regulatory role of the interferons in JCPyV early and late transcription and viral replication is more pronounced in the presence of C/EBPβ-LIP. Knockdown of C/EBPβ-LIP by shRNA reverse the inhibitory effect on JCPyV viral replication. Therefore, IFNα and IFNβ negatively regulate JCPyV through induction of C/EBPβ-LIP, which together with other cellular transcriptional factors may control the balance between JCPyV latency and activation.

2021 ◽  
Vol 118 (51) ◽  
pp. e2113060118
Author(s):  
Xing Liu ◽  
Dhiraj Acharya ◽  
Eric Krawczyk ◽  
Chase Kangas ◽  
Michaela U. Gack ◽  
...  

Herpes simplex virus (HSV) infection relies on immediate early proteins that initiate viral replication. Among them, ICP0 is known, for many years, to facilitate the onset of viral gene expression and reactivation from latency. However, how ICP0 itself is regulated remains elusive. Through genetic analyses, we identify that the viral γ134.5 protein, an HSV virulence factor, interacts with and prevents ICP0 from proteasomal degradation. Furthermore, we show that the host E3 ligase TRIM23, recently shown to restrict the replication of HSV-1 (and certain other viruses) by inducing autophagy, triggers the proteasomal degradation of ICP0 via K11- and K48-linked ubiquitination. Functional analyses reveal that the γ134.5 protein binds to and inactivates TRIM23 through blockade of K27-linked TRIM23 autoubiquitination. Deletion of γ134.5 or ICP0 in a recombinant HSV-1 impairs viral replication, whereas ablation of TRIM23 markedly rescues viral growth. Herein, we show that TRIM23, apart from its role in autophagy-mediated HSV-1 restriction, down-regulates ICP0, whereas viral γ134.5 functions to disable TRIM23. Together, these results demonstrate that posttranslational regulation of ICP0 by virus and host factors determines the outcome of HSV-1 infection.


2021 ◽  
Vol 118 (51) ◽  
pp. e2104163118
Author(s):  
Tianyou Yao ◽  
Seth Coleman ◽  
Thu Vu Phuc Nguyen ◽  
Ido Golding ◽  
Oleg A. Igoshin

When host cells are in low abundance, temperate bacteriophages opt for dormant (lysogenic) infection. Phage lambda implements this strategy by increasing the frequency of lysogeny at higher multiplicity of infection (MOI). However, it remains unclear how the phage reliably counts infecting viral genomes even as their intracellular number increases because of replication. By combining theoretical modeling with single-cell measurements of viral copy number and gene expression, we find that instead of hindering lambda’s decision, replication facilitates it. In a nonreplicating mutant, viral gene expression simply scales with MOI rather than diverging into lytic (virulent) and lysogenic trajectories. A similar pattern is followed during early infection by wild-type phage. However, later in the infection, the modulation of viral replication by the decision genes amplifies the initially modest gene expression differences into divergent trajectories. Replication thus ensures the optimal decision—lysis upon single-phage infection and lysogeny at higher MOI.


2021 ◽  
Author(s):  
Grant Tarnow ◽  
Alan McLachlan

β-catenin (Ctnnb1) supports high levels of liver gene expression in hepatocytes in proximity to the central vein functionally defining zone 3 of the liver lobule. This region of the liver lobule supports the highest levels of viral biosynthesis in wildtype HBV transgenic mice. Liver-specific β-catenin-null HBV transgenic mice exhibit a stark loss of high levels of pericentral viral biosynthesis. Additionally, viral replication that does not depend directly on β-catenin activity appears to expand to include hepatocytes of zone 1 of the liver lobule in proximity to the portal vein, a region of the liver that typically lacks significant HBV biosynthesis in wildtype HBV transgenic mice. While the average amount of viral RNA transcripts does not change, viral DNA replication is reduced approximately three-fold. Together, these observations demonstrate that β-catenin signaling represents a major determinant of HBV biosynthesis governing the magnitude and distribution of viral replication across the liver lobule in vivo. Additionally, these findings reveal a novel mechanism for the regulation of HBV biosynthesis that is potentially relevant to the expression of additional liver-specific genes. IMPORTANCE Viral biosynthesis is highest around the central vein in the HBV transgenic mouse model of chronic infection. The associated HBV biosynthetic gradient across the liver lobule is primarily dependent upon β-catenin. In the absence of β-catenin, the gradient of viral gene expression spanning the liver lobule is absent and HBV replication is reduced. Therefore, therapeutically manipulating β-catenin activity in the liver of chronic HBV carriers may reduce circulating infectious virions without greatly modulating viral protein production. Together, these change in viral biosynthesis might limit infection of additional hepatocytes while permitting immunological clearance of previously infected cells, potentially limiting disease persistence.


2019 ◽  
Author(s):  
David G. Courtney ◽  
Andrea Chalem ◽  
Hal P. Bogerd ◽  
Brittany A. Law ◽  
Edward M. Kennedy ◽  
...  

AbstractWhile it has been known for several years that viral RNAs are subject to the addition of several distinct covalent modifications to individual nucleotides, collectively referred to as epitranscriptomic modifications, the effect of these editing events on viral gene expression has been controversial. Here, we report the purification of murine leukemia virus (MLV) genomic RNA to homogeneity and show that this viral RNA contains levels ofN6-methyladenosine (m6A), 5-methylcytosine (m5C) and 2’O-methylated (Nm) ribonucleotides that are an order of magnitude higher than detected on bulk cellular mRNAs. Mapping of m6A and m5C residues on MLV transcripts identified multiple discrete editing sites and allowed the construction of MLV variants bearing silent mutations that removed a subset of these sites. Analysis of the replication potential of these mutants revealed a modest but significant attenuation in viral replication in 3T3 cells in culture. Consistent with a positive role for m6A and m5C in viral replication, we also demonstrate that overexpression of the key m6A reader protein YTHDF2 enhances MLV replication, while downregulation of the m5C writer NSUN2 inhibits MLV replication.ImportanceThe data presented in this manuscript demonstrate that MLV RNAs bear an exceptionally high level of the epitranscriptomic modifications m6A, m5C and Nm, thus suggesting that these each facilitate some aspect of the viral replication cycle. Consistent with this hypothesis, we demonstrate that mutational removal of a subset of these m6A or m5C modifications from MLV transcripts inhibits MLV replication incisand a similar result was also observed upon manipulation of the level of expression of key cellular epitranscriptomic cofactors intrans. Together, these results argue that the addition of several different epitranscriptomic modifications to viral transcripts stimulates viral gene expression and suggest that MLV has therefore evolved to maximize the level of these modifications that are added to viral RNAs.


Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 134
Author(s):  
Mitchell P. Ledwith ◽  
Vy Tran ◽  
Thiprampai Thamamongood ◽  
Christina A. Higgins ◽  
Shashank Tripathi ◽  
...  

Hosts mount prudently tuned responses to viral infection in an attempt to block nearly every step of the replication cycle. Viruses must adapt to replicate in this hostile antiviral cellular state. Interferon stimulation or pathogen challenge robustly induces expression of IFIT (interferon-induced proteins with tetratricopeptide repeats) proteins. IFITs are a family of proteins that bind RNA and play antiviral roles during infection. Thus, we were surprised to identify the IFIT family as top candidate proviral host factors for influenza A virus (IAV) in a genome-wide CRISPR–Cas9 knockout screen. We validated the proviral activity of IFIT2 by showing that IFIT2-deficient cells support lower levels of IAV replication and exhibit defects in viral gene expression. The molecular functions of IFIT2, let alone how they are used by influenza virus, are unknown. Using CLIP-seq, we showed that IFIT2 binds directly to viral and cellular mRNAs in AU-rich regions largely in the 3’UTR, with a preference for a subset of interferon-stimulated mRNAs. IFIT2 also associates with actively translating ribosomes in infected cells to facilitate the translation of viral messages. IFIT2-responsive elements from an IAV mRNA were sufficient to confer translational enhancement to exogenous transcripts in cis. Conversely, mutation of these elements or the use of an IFIT2 RNA-binding mutant ablated stimulation of viral gene expression. Together, these data link the RNA-binding capability of IFIT2 to changes in translational efficiency of target viral mRNAs and the stimulation of viral replication. They establish a model for the normal function of IFIT2 as an antiviral protein affecting the post-transcriptional fate of cellular mRNAs and explain how influenza virus repurposes IFIT2 to support viral replication. Our work highlights a new node for the regulation of translation during interferon responses and highlights how canonical antiviral responses may be repurposed to support viral replication.


2002 ◽  
Vol 76 (1) ◽  
pp. 313-326 ◽  
Author(s):  
Jeffery L. Meier ◽  
Michael J. Keller ◽  
James J. McCoy

ABSTRACT We have shown previously that the human cytomegalovirus (HCMV) major immediate-early (MIE) distal enhancer is needed for MIE promoter-dependent transcription and viral replication at low multiplicities of infection (MOI). To understand how this region works, we constructed and analyzed a series of HCMVs with various distal enhancer mutations. We show that the distal enhancer is composed of at least two parts that function independently to coordinately activate MIE promoter-dependent transcription and viral replication. One such part is contained in a 47-bp segment that has consensus binding sites for CREB/ATF, SP1, and YY1. At low MOI, these working parts likely function in cis to directly activate MIE gene expression, thus allowing viral replication to ensue. Three findings support the view that these working parts are likely cis-acting elements. (i) Deletion of either part of a bisegmented distal enhancer only slightly alters MIE gene transcription and viral replication. (ii) Reversing the distal enhancer’s orientation largely preserves MIE gene transcription and viral replication. (iii) Placement of stop codons at −300 or −345 in all reading frames does not impair MIE gene transcription and viral replication. Lastly, we show that these working parts are dispensable at high MOI, partly because of compensatory stimulation of MIE promoter activity and viral replication that is induced by a virion-associated component(s) present at a high viral particle/cell ratio. We conclude that the distal enhancer is a complex multicomponent cis-acting region that is required to augment both MIE promoter-dependent transcription and HCMV replication.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2010 ◽  
Author(s):  
Simon Langer ◽  
Xin Yin ◽  
Arturo Diaz ◽  
Alex J. Portillo ◽  
David E. Gordon ◽  
...  

The infectious life cycle of the human immunodeficiency virus type 1 (HIV-1) is characterized by an ongoing battle between a compendium of cellular proteins that either promote or oppose viral replication. On the one hand, HIV-1 utilizes dependency factors to support and sustain infection and complete the viral life cycle. On the other hand, both inducible and constitutively expressed host factors mediate efficient and functionally diverse antiviral processes that counteract an infection. To shed light into the complex interplay between HIV-1 and cellular proteins, we previously performed a targeted siRNA screen to identify and characterize novel regulators of viral replication and identified Cullin 3 (Cul3) as a previously undescribed factor that negatively regulates HIV-1 replication. Cul3 is a component of E3-ubiquitin ligase complexes that target substrates for ubiquitin-dependent proteasomal degradation. In the present study, we show that Cul3 is expressed in HIV-1 target cells, such as CD4+ T cells, monocytes, and macrophages and depletion of Cul3 using siRNA or CRISPR/Cas9 increases HIV-1 infection in immortalized cells and primary CD4+ T cells. Conversely, overexpression of Cul3 reduces HIV-1 infection in single replication cycle assays. Importantly, the antiviral effect of Cul3 was mapped to the transcriptional stage of the viral life cycle, an effect which is independent of its role in regulating the G1/S cell cycle transition. Using isogenic viruses that only differ in their promotor region, we find that the NF-κB/NFAT transcription factor binding sites in the LTR are essential for Cul3-dependent regulation of viral gene expression. Although Cul3 effectively suppresses viral gene expression, HIV-1 does not appear to antagonize the antiviral function of Cul3 by targeting it for degradation. Taken together, these results indicate that Cul3 is a negative regulator of HIV-1 transcription which governs productive viral replication in infected cells.


2012 ◽  
Vol 87 (3) ◽  
pp. 1443-1453 ◽  
Author(s):  
Martha Stefanidou ◽  
Irene Ramos ◽  
Veronica Mas Casullo ◽  
Janie B. Trépanier ◽  
Sara Rosenbaum ◽  
...  

ABSTRACTHerpes simplex virus 2 (HSV-2) may cause frequent recurrences, highlighting its ability to evade host defense. This study tested the hypothesis that HSV-2 interferes with dendritic cell (DC) function as an escape mechanism, which may contribute to enhanced HIV replication in coinfected populations. Immature monocyte-derived human DCs were exposed to live or UV-inactivated HSV-2 or lipopolysaccharide. Little or no increase in the maturation marker CD83 was observed in response to HSV-2 and HSV-2 exposed DCs were impaired in their ability to present antigen (influenza) to T cells. Exposure to UV-inactivated virus stimulated a modest, but significant increase in CD83, suggesting that viral gene expression contributes to the block in DC maturation. The functional impairment of HSV-2-exposed DCs could be partially attributed to the induction of apoptosis. Live and inactivated HSV-2 triggered an increase in the number of early and late apoptotic cells in both the infected and bystander cell populations; apoptosis was associated with a decrease in cellular FLICE-inhibitory protein (c-FLIP). Paradoxically, HSV-2 induced Akt phosphorylation, which typically promotes DC maturation and survival. Despite these aberrant responses, live and inactivated HSV-2 induced the release of cytokines into culture supernatants, which were sufficient to activate HIV-1 replication in latently infected U1 cells. Together, these findings suggest that in the presence of overt or subclinical HSV-2, the function of mucosal DCs would be impaired. These responses may allow HSV to escape immune surveillance but may also promote HIV infection and contribute to the epidemiological link between HIV and HSV.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
David G. Courtney ◽  
Andrea Chalem ◽  
Hal P. Bogerd ◽  
Brittany A. Law ◽  
Edward M. Kennedy ◽  
...  

ABSTRACTWhile it has been known for several years that viral RNAs are subject to the addition of several distinct covalent modifications to individual nucleotides, collectively referred to as epitranscriptomic modifications, the effect of these editing events on viral gene expression has been controversial. Here, we report the purification of murine leukemia virus (MLV) genomic RNA to homogeneity and show that this viral RNA contains levels ofN6-methyladenosine (m6A), 5-methylcytosine (m5C), and 2′O-methylated (Nm) ribonucleotides that are an order of magnitude higher than detected on bulk cellular mRNAs. Mapping of m6A and m5C residues on MLV transcripts identified multiple discrete editing sites and allowed the construction of MLV variants bearing silent mutations that removed a subset of these sites. Analysis of the replication potential of these mutants revealed a modest but significant attenuation in viral replication in 3T3 cells in culture. Consistent with a positive role for m6A and m5C in viral replication, we also demonstrate that overexpression of the key m6A reader protein YTHDF2 enhances MLV replication, while downregulation of the m5C writer NSUN2 inhibits MLV replication.IMPORTANCEThe data presented in the present study demonstrate that MLV RNAs bear an exceptionally high level of the epitranscriptomic modifications m6A, m5C, and Nm, suggesting that these each facilitate some aspect of the viral replication cycle. Consistent with this hypothesis, we demonstrate that mutational removal of a subset of these m6A or m5C modifications from MLV transcripts inhibits MLV replication incis, and a similar result was also observed upon manipulation of the level of expression of key cellular epitranscriptomic cofactors intrans. Together, these results argue that the addition of several different epitranscriptomic modifications to viral transcripts stimulates viral gene expression and suggest that MLV has therefore evolved to maximize the level of these modifications that are added to viral RNAs.


Sign in / Sign up

Export Citation Format

Share Document