scholarly journals Combination of Antiretroviral Drugs Zidovudine and Efavirenz Impairs Tumor Growths in a Mouse Model of Cancer

Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2396
Author(s):  
Marcel A. Schneider ◽  
Anton A. Buzdin ◽  
Achim Weber ◽  
Pierre-Alain Clavien ◽  
Pieter Borger

LINE1 retrotransposons, which are thought to be the remnants of ancient integrations of retrovirus-like elements, are aberrantly (re)activated in many cancer cells. Due to LINE1-induced alterations in target gene expression and/or chromosomal rearrangements, they may be important drivers of tumorigenesis. Moreover, LINE1 encoded proteins, Open Reading Frame (ORF)1 and ORF2, may have pro-oncogenic potential through inductors of oncogenic transcription factors or inhibitors of cell cycle suppressors. The current study therefore aimed to investigate in vitro and in vivo anti-tumorigenic effects of two well-known antiretroviral drugs, zidovudine, a nucleoside analogue inhibitor of RT (NRTI), and efavirenz, a non-nucleoside RT inhibitor (NNRTI). Our data demonstrate that both drugs in clinically relevant doses significantly reduced the proliferation of murine and human cancer cell lines, as well as growth of tumors in a murine subcutaneous model. Intriguingly, we found that the combination of both zidovudine and efavirenz almost entirely blocked tumorigenesis in vivo. Because both drugs are FDA-approved agents and the combination was very well tolerated in mice, the combination therapy as presented in our paper might be an opportunity to treat colorectal tumors and metastasis to the liver in an inexpensive way.

2004 ◽  
Vol 78 (12) ◽  
pp. 6509-6516 ◽  
Author(s):  
Michael Schmidt ◽  
Hisako Katano ◽  
Ioannis Bossis ◽  
John A. Chiorini

ABSTRACT To better understand the relationship between primate adeno-associated viruses (AAVs) and those of other mammals, we have cloned and sequenced the genome of an AAV found as a contaminant in two isolates of bovine adenovirus that was reported to be serologically distinct from primate AAVs. The bovine AAV (BAAV) genome has 4,693 bp, and its organization is similar to that of other AAV isolates. The left-hand open reading frame (ORF) and both inverted terminal repeats (ITRs) have the highest homology with the rep ORF and ITRs of AAV serotype 5 (AAV-5) (89 and 96%, respectively). However, the right-hand ORF was only 55% identical to the AAV-5 capsid ORF; it had the highest homology with the capsid ORF of AAV-4 (76%). By comparing the BAAV cap sequence with a model of an AAV-4 capsid, we mapped the regions of BAAV VP1 that are divergent from AAV-4. These regions are located on the outside of the capsid and are partially located in exposed loops. BAAV was not neutralized by antisera raised against recombinant AAV-2, AAV-4, or AAV-5, and it demonstrated a unique cell tropism profile in four human cancer cell lines, suggesting that BAAV might have transduction activity distinct from that of other isolates. A murine model of salivary gland gene transfer was used to evaluate the in vivo performance of recombinant BAAV. Recombinant BAAV-mediated gene transfer was 11 times more efficient than that with AAV-2. Overall, these data suggest that vectors based on BAAV could be useful for gene transfer applications.


2020 ◽  
Author(s):  
Chenyang He ◽  
Guo Yu ◽  
Anil Kumar Mondru ◽  
Tania Chakraborty ◽  
Souvik Roy

Abstract Background: Our recent investigation directed to synthesize and characterize a novel ruthenium– phloretin complex accompanied by the study of antioxidant in addition to DNA binding capabilities, and to determine the chemotherapeutic activity against breast carcinoma in vitro and in vivo approach.Methods: Ruthenium–phloretin complex was synthesized and characterized using various spectroscopic methods. The complex was further investigated to determine its efficacy in both MCF-7 and MDA-MB-231 human cancer cell lines and finally in an in vivo model of DMBA induced mammary carcinogenesis in ratsResults: Our studies confirm that the chelation of the metal and ligand was materialize by the 3-OH and 9-OH functional groups of the ligand and the complex is found crystalline and was capable of intercalating with CT-DNA. The complex was capable of reducing cellular propagation and initiate apoptotic events in MCF-7 and MDA-MB-231 breast carcinoma cell lines. Additionally, ruthenium-phloretin complex could modulate p53 intervene apoptosis in the breast carcinoma, initiated by the intrinsic apoptotic trail facilitated by the Bcl2 and Bax and at the same time down regulating the PI3K/Akt/mTOR pathway coupled with MMP9 regulated tumor invasive pathways.Conclusions: Ruthenium-phloretin chemotherapy could interrupt, revoke or suspend the succession of breast carcinoma by altering intrinsic apoptosis along with the antiangiogenic pathway, hence fulfilling the role of a prospective candidate in cancer chemotherapeutics in the in the near future.


2020 ◽  
Author(s):  
Chenyang He ◽  
Junli Wang ◽  
Tania Chakraborty ◽  
Souvik Roy

Abstract Background: Our recent investigation directed to synthesize and characterize a novel ruthenium– phloretin complex accompanied by the study of antioxidant in addition to DNA binding capabilities, and to determine the chemotherapeutic activity against breast carcinoma in vitro and in vivo approach.Methods: Ruthenium–phloretin complex was synthesized and characterized using various spectroscopic methods. The complex was further investigated to determine its efficacy in both MCF-7 and MDA-MB-231 human cancer cell lines and finally in an in vivo model of DMBA induced mammary carcinogenesis in ratsResults: Our studies confirm that the chelation of the metal and ligand was materialize by the 3-OH and 9-OH functional groups of the ligand and the complex is found crystalline and was capable of intercalating with CT-DNA. The complex was capable of reducing cellular propagation and initiate apoptotic events in MCF-7 and MDA-MB-231 breast carcinoma cell lines. Additionally, ruthenium-phloretin complex could modulate p53 intervene apoptosis in the breast carcinoma, initiated by the intrinsic apoptotic trail facilitated by the Bcl2 and Bax and at the same time down regulating the PI3K/Akt/mTOR pathway coupled with MMP9 regulated tumor invasive pathways.Conclusions: Ruthenium-phloretin chemotherapy could interrupt, revoke or suspend the succession of breast carcinoma by altering intrinsic apoptosis along with the antiangiogenic pathway, hence fulfilling the role of a prospective candidate in cancer chemotherapeutics in the in the near future.


Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1598 ◽  
Author(s):  
William Meza-Morales ◽  
M. Mirian Estévez-Carmona ◽  
Yair Alvarez-Ricardo ◽  
Marco A. Obregón-Mendoza ◽  
Julia Cassani ◽  
...  

At the present time, scientists place a great deal of effort worldwide trying to improve the therapeutic potential of metal complexes of curcumin and curcuminoids. Herein, the synthesis of four homoleptic metal complexes with diacetylcurcumin (DAC), using a ligand designed to prevent the interaction of phenolic groups, rendering metal complexes through the β-diketone functionality, is reported. Due to their physiological relevance, we used bivalent magnesium, zinc, copper, and manganese for complexation with DAC. The resulting products were characterized by ultraviolet-visible (UV-Vis), fluorescence spectroscopy, infrared spectroscopy (IR), liquid and solid-state nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), magnetic moment, mass spectrometry (MS), single crystal, and powder X-ray diffraction (SCXRD and PXRD). Crystallization was achieved in dimethylsulfoxide (DMSO) or N,N-dimethylformamide (DMF) as triclinic systems with space group P-1, showing the metal bound to the β-diketone function, while the 1H-NMR confirmed the preference of the enolic form of the ligand. Single crystal data demonstrated a 1:2 metal:ligand ratio. The inhibition of lipid peroxidation was evaluated using the thiobarbituric acid reactive substance assay (TBARS). All four metal complexes (Mg, Zn, Cu, and Mn) exhibited good antioxidant effect (IC50 = 2.03 ± 0.27, 1.58 ± 0.07, 1.58 ± 0.15 and 1.24 ± 0.10 μM respectively) compared with butylated hydroxytoluene (BHT) and α-tocopherol. The cytotoxic activity in human cancer cell lines against colon adenocarcinoma (HCT-15), mammary adenocarcinoma (MCF-7), and lung adenocarcinoma (SKLU-1) was found comparable ((DAC)2Mg), or ca. 2-fold higher ((DAC)2Zn) than cisplatin. The acute toxicity assays indicate class 5 toxicity, according to the Organization for Economic Co-operation and Development (OECD) guidelines at doses of 3 g/kg for all complexes. No mortality or changes in the behavior of animals in any of the treated groups was observed. A therapeutic potential can be envisaged from the relevant cytotoxic activity upon human cancer cell lines in vitro and the undetected in vivo acute toxicity of these compounds.


2021 ◽  
Vol 28 ◽  
Author(s):  
Anastasios I. Birmpilis ◽  
Panagiotis Vitsos ◽  
Ioannis V. Kostopoulos ◽  
Lillian Williams ◽  
Kyriaki Ioannou ◽  
...  

Background: Members of the α-thymosin family have long been studied for their immunostimulating properties. Among them, the danger-associated molecular patterns (DAMPs) prothymosin α (proTα) and its C-terminal decapeptide proTα(100–109) have been shown to act as immunomodulators in vitro, due to their ability to promote T helper type 1 (Th1) responses. Recently, we verified these findings in vivo, showing that both proTα and proTα(100-109) enhance antitumor-reactive T cell-mediated responses. Methods: In view of the eventual use of proTα and proTα(100-109) in humans, we investigated their safety profile in silico, in human leukocytes and cancer cells lines in vitro, and in immunocompetent mice in vivo, in comparison to the proTα derivative thymosin alpha 1 (Τα1), a 28-mer peptide extensively studied for its safety in clinical trials. Results: In silico prediction via computational tools showed that all three peptide sequences likely are non-toxic or do not induce allergic regions. In vitro, proTα, proTα(100-109) and Tα1 did not affect the viability of human cancer cell lines and healthy donor-derived leukocytes, did not promote apoptosis or alter cell cycle distribution. Furthermore, mice injected with proTα, proTα(100-109) and Tα1 at doses equivalent to the suggested dose regimen of Tα1 in humans, did not show signs of acute toxicity, whereas proTα and proTα(100-109) increased the levels of proinflammatory and Th1-type cytokines in their peripheral blood. Conclusion: Our preliminary findings suggest that proTα and proTα(100-109), even at high concentrations, are non-toxic in vitro and in an acute toxicity model in vivo; moreover, we show that the two peptides retain their immunomodulatory properties in vivo and, eventually, could be considered for therapeutic use in humans.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Adel S. Al-Zubairi ◽  
Ahmad Bustamam Abdul ◽  
Siddig Ibrahim Abdelwahab ◽  
Chew Yuan Peng ◽  
Syam Mohan ◽  
...  

The use of evidence-based complementary and alternative medicine is increasing rapidly.Eleucine indica(EI) is traditionally used in ailments associated with liver and kidneys. The therapeutic benefit of the medicinal plants is often attributed to their antioxidant properties. Therefore, the aim of this study was to screen the hexane, dicholoromethane, ethyl acetate (EA) and methanol extracts (MeTH) of EI for their antioxidant, antibacterial and anti-cancer effects using total phenolic contents (TPCs) and DPPH, disc diffusion method and MTT cytotoxicity assays, respectively. The MeTH was showed to have the highest TPC and scavenging activity (77.7%) on DPPH assay, followed by EA (64.5%), hexane (47.19%) and DCM (40.83%) extracts, whereas the MeTH showed no inhibitory effect on all tested bacteria strains. However, the EA extract exhibited a broad spectrum antibacterial activity against all tested bacteria exceptBacillus subtilis, in which this bacterium was found to be resistant to all EI extracts. Meanwhile, hexane extract was demonstrated to have a remarkable antibacterial activity against methicillin resistantStaphylococcus aureus(MRSA) andPseudomonas aeruginosa, while the dicholoromethane extract did not exhibit significant activity againstP. aeruginosa. None of the extracts showed significant cytotoxic activity towards MCF-7, HT-29 and CEM-SS human cancer cell lines after 72 h incubation time (IC50> 30 μg/ml). These results demonstrate that the extract prepared from the EI possesses antioxidant activityin vitroin addition to antibacterial properties. Further investigations are needed to verify the antioxidant effectsin vitroandin vivo.


1988 ◽  
Vol 66 (6) ◽  
pp. 594-616 ◽  
Author(s):  
Mary Pat Moyer ◽  
John W. Egan ◽  
J. Bradley Aust ◽  
Rex C. Moyer

DNA transfer technology has greatly contributed to progress in understanding molecular biology and genetics. In recent years, great efforts have been expended to determine the oncogenic potential of single, defined genes or complex gene mixtures as a prelude to defining the role those genes may play in neoplastic transformation in vitro and tumor induction in vivo. This paper reviews the currently available DNA transfection techniques and their application toward understanding cancer initiation and progression, and how the in vitro and animal models may apply to human cancer.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1761
Author(s):  
Natalya M. Kogan ◽  
Maximilian Peters ◽  
Raphael Mechoulam

A cannabinoid anticancer para-quinone, HU-331, which was synthesized by our group five decades ago, was shown to have very high efficacy against human cancer cell lines in-vitro and against in-vivo grafts of human tumors in nude mice. The main mechanism was topoisomerase IIα catalytic inhibition. Later, several groups synthesized related compounds. In the present presentation, we review the publications on compounds synthesized on the basis of HU-331, summarize their published activities and mechanisms of action and report the synthesis and action of novel quinones, thus expanding the structure-activity relationship in these series.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Mariateresa Badolato ◽  
Gabriele Carullo ◽  
Francesca Aiello ◽  
Antonio Garofalo

Protein disulfide isomerase (PDI) is a member of the thioredoxin superfamily of redox enzymes. PDI is a multifunctional protein that catalyzes disulfide bond formation, cleavage, and rearrangement in unfolded or misfolded proteins and functions as a chaperone in the endoplasmic reticulum. Besides acting as a protein folding catalyst, several evidences have suggested that PDI can bind small molecules containing, for example, a phenolic structure, which includes the estrogenic one. Increasing studies indicate that PDI is involved in both physiology and pathophysiology of cells and tissues and is involved in the survival and proliferation of different cancers. Propionic acid carbamoyl methyl amides (PACMAs) showed anticancer activity in human ovarian cancer, both in vitro and in vivo, by inhibiting PDI. The inhibition of PDI’s activity may have a therapeutic role, in various diseases, including cancer. In the present study, we designed and synthesized a diversified small library of compounds with the aim of identifying a new class of PDI inhibitors. Most of synthesized compounds showed a good inhibitory potency against PDI and particularly 4-methyl substituted 2,6-di-tert-butylphenol derivatives (8–10) presented an antiproliferative activity in a wide panel of human cancer cell lines, including ovarian ones.


Sign in / Sign up

Export Citation Format

Share Document