scholarly journals Regulatory B Cells and Their Cytokine Profile in HCV-Related Hepatocellular Carcinoma: Association with Regulatory T Cells and Disease Progression

Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 380 ◽  
Author(s):  
Helal F. Hetta ◽  
Mohamed A. Mekky ◽  
Asmaa M. Zahran ◽  
Mohamed O. Abdel-Malek ◽  
Haidi K. Ramadan ◽  
...  

Although regulatory B cells (Bregs) have been proven to play a suppressive role in autoimmune diseases, infections and different tumors, little is known regarding hepatocellular carcinoma (HCC), especially in hepatitis C-related settings. Herein, we analyzed the frequency of circulating Bregs, serum levels of IL-10, IL-35 and B-cell activating factor (BAFF) and investigated their association with regulatory T cells (Tregs) and disease progression in HCV-related HCC. For comparative purposes, four groups were enrolled; chronic HCV (CHC group, n = 35), HCV-related liver cirrhosis (HCV-LC group, n = 35), HCV-related HCC (HCV-HCC group, n = 60) and an apparently healthy control (Control-group, n = 20). HCC diagnosis and staging were in concordance with the Barcelona Clinic Liver Cancer (BCLC) staging system. Analysis of the percentage of Breg cells and peripheral lymphocyte subsets (Treg) was performed by flow cytometry. Serum cytokine levels of IL-10, IL-35 and B-cell activating factor (BAFF) were measured by ELISA. The frequency of Bregs was significantly higher in the HCV-HCC group compared to the other groups and controls. A significant increase was noted in late-HCC versus those in the early stages. The frequency of Bregs was positively correlated with Tregs, serum IL-10, IL-35 and BAFF. In conclusion, Peripheral Bregs were positively correlated with the frequency of Tregs, IL-10, IL-35 and BAFF, and may be associated with HCV-related HCC progression.

Kidney360 ◽  
2020 ◽  
Vol 1 (5) ◽  
pp. 389-398
Author(s):  
Kenna R. Degner ◽  
Nancy A. Wilson ◽  
Shannon R. Reese ◽  
Sandesh Parajuli ◽  
Fahad Aziz ◽  
...  

BackgroundB cell depletion is a common treatment of antibody-mediated rejection (ABMR). We sought to determine the specific immunopathologic effects of this therapeutic approach in kidney transplantation.MethodsThis was a prospective observational study of recipients of kidney transplants diagnosed with late ABMR (>3 months after transplant). Patients received treatment with pulse steroids, IVIG, and rituximab. Donor-specific HLA antibodies (DSA), kidney allograft pathology, renal function, immune cell phenotypes, and 47 circulating cytokines were assessed at baseline and at 3 months.ResultsWe enrolled 23 patients in this study between April 2015 and March 2019. The majority of patients were male (74%) and white (78%) with an average age of 45.6±13.8 years. ABMR was diagnosed at 6.8±5.9 years (4 months to 25 years) post-transplant. Treatment was associated with a significant decline in circulating HLA class I (P=0.003) and class II DSA (P=0.002) and peritubular capillaritis (ptc; P=0.04) compared to baseline. Serum creatinine, BUN, eGFR, and proteinuria (UPC) remained stable. Circulating B cells were depleted to barely detectable levels (P≤0.001), whereas BAFF (P=0.0001), APRIL (P<0.001), and IL-10 (P=0.02) levels increased significantly post-treatment. Notably, there was a significant rise in circulating CD4+ (P=0.02) and CD8+ T cells (P=0.003). We also noted a significant correlation between circulating cytotoxic CD8+ T cells and BAFF (P=0.05), regulatory T cells and IL-10 (P=0.002), and regulatory T cells and HLA class I DSA (P=0.005).ConclusionsShort-term pulse steroids/IVIG/rituximab therapy was associated with inhibition of ABMR (DSA and ptc), stabilization of kidney function, and increased regulatory B cell and T cell survival cytokines. Additional studies are needed to understand the implications of B cell depletion on the crosstalk between T cells and B cells, and humoral components that regulate ABMR.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 359-359
Author(s):  
Weizhou Zhang ◽  
Arnon P. Kater ◽  
Han-Yu Chuang ◽  
Thomas Enzler ◽  
George F. Widhopf ◽  
...  

Abstract Abstract 359 Chromosomal translocations involving c-Myc are frequently found in high grade lymphoma and multiple myeloma. In contrast, c-Myc translocations rarely occur in low-grade lymphomas/leukemias like chronic lymphocytic leukemia (CLL), but when present they are associated with rapid disease progression and bad prognosis. Overexpression of c-myc may also be the result of increased transcription by several proto-oncogene transcription factors, including NF-kB. Mice with c-Myc de-regulation at different stages of B cell development develop either aggressive B cells lymphomas or plasma cell neoplasm. So far, no c-Myc mouse model developed low-grade lymphoma/leukemia. iMycCa mice develop an expansion of CD5+ peritoneal B1 cells, as compared with WT littermates mice. These mice have a normal life-span and very rarely develop B cell lymphoma at older age. Interestingly, in iMycCa mice mature B cells, but not plasma cells,could be rescued from apoptosis by administration of B cell-activating factor belonging to the TNF family (BAFF). To our surprise, double transgenic iMycCa/Baff-Tg (Myc/Baff) mice developed a disease resembling human CLL, with dramatically shorter mean survival than parental strains, due to early onset and rapid clonal expansion of a mature CD5+B220low B cell population. Those cells transferred the disease into Baff-Tg (Baff) mice with marked infiltration in lymphoid organs and bone marrow. Gene-expression analyses revealed that among the genes altered in Myc/Baff CD5+B220lowleukemia cells were those with known relevance to human CLL disease, including elevated anti-apoptotic Bcl2 family members. Apart from studies on individual genes, sub-network analysis was performed which showed enrichment of apoptosis-related and stress-induced gene sets in Myc/Baff CD5+CD3- leukemia cells. The NF-kB gene set, a major target downstream of BAFF signaling, was also enriched in Myc/Baff CD5+CD3- leukemia cells. We observed a continuum in levels of c-MYC mRNA in 166 samples using Affymetrix array analyses. Changes in c-Myc protein expression were confirmed by immunoblot analyses and correlated with disease progression. In accordance with the functions of c-Myc as a promoter of cell cycle progression, as well as apoptosis, we found enhanced spontaneous cell death in vitro in CLL cells expressing high levels of c-Myc, which could be abrogated by co culture with BAFF expressing nurse-like cells (NLC) or recombinant BAFF. In addition to its anti-apoptotic role, BAFF treatment of primary human CLL cells led to dramatically enhanced expression of c-Myc through the IKK/NF-kB pathway. Inhibition of the NF-kB pathway significantly reduced viability of both Myc/Baff CD5+CD3- leukemia cells and human CLL cells co-cultured with NLC. Also it significantly lowered CD5+B220low leukemia cell population in blood and spleen, and prevented the infiltration of leukemia cells into lymph nodes and bone marrow of transplanted mice. This study demonstrates a potential pathologic role for c-Myc, in the pathogenesis and progression of CLL. Disclosures: No relevant conflicts of interest to declare.


PLoS ONE ◽  
2011 ◽  
Vol 6 (12) ◽  
pp. e28649 ◽  
Author(s):  
Yixiang Han ◽  
Jianbo Wu ◽  
Laixi Bi ◽  
Shudao Xiong ◽  
Shenmeng Gao ◽  
...  

2010 ◽  
Vol 184 (7) ◽  
pp. 3321-3325 ◽  
Author(s):  
Min Yang ◽  
Lingyun Sun ◽  
Shengjun Wang ◽  
King-Hung Ko ◽  
Huaxi Xu ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3763-3763
Author(s):  
Yunfeng Hao ◽  
Renchi Yang ◽  
Zeping Zhou

Abstract Background: Immunological thrombocytopenia (ITP) is an antibody-mediated autoimmune disease characterized by accelerated platelet destruction and suboptimal platelet production. The proliferation-inducing ligand (APRIL or TNFSF13), a member of the TNF superfamily, is structurally and functionally related to the TNF family of B cell activating factors (BAFF, TNFSF13b) and has been shown to regulate lymphocyte survival by interacting with its receptors. And activation. Transmembrane activators and calcium regulate cyclophilin ligand interactors (TACI) and B cell mature antigens (BCMA). APRIL is secreted by various cells as soluble factors, including inactive B cells, T cells, monocytes, neutrophils, macrophages and dendritic cells, as well as epithelial cells, osteoclasts and megakaryocytes. Recent studies have shown that APRIL not only participates in normal immune responses, but also plays an important role in the establishment and/or maintenance of autoimmune and inflammatory diseases. Aims: Based on the relationship between APRIL, which promotes proliferation and regulates immunity, and the development of autoimmunity, we hypothesize that APRIL may play a role in the pathogenesis of ITP. Methods:1. The EDTA anticoagulated whole blood was collected, and peripheral blood mononuclear cells (PBMC) were separated by Ficoll density gradient centrifugation. The APRIL levels on the surface of T cells, B cells, DC cells and platelets were detected by flow cytometry.Detection of plasma APRIL levels in patients with ITP by ELISA.Real time quantitative PCR were used for detecting the level of APRIL and its receptors BCMA and TACI from PBMC of healthy controls and ITP patients.Use soluble APRIL or BLyS protein and APRIL inhibitors to examine the effect of APRIL inhibition on IL-10 secretion by B cells. Flow cytometry and intracellular staining were used to evaluate B10 cells. Resoult: 1. The APRIL on the platelet surface of patients with ITP was significantly lower than that of the normal control group (p<0.01). In the ITP patients of 10 patients with complete remission, the content of APRIL on the platelet surface was significantly increased after treatment (p=0.02), and there was no significant change in the treatment-ineffective group. . The levels of APRIL and its receptors BCMA and TACI on B cells and DC cells in ITP patients were higher than those in normal controls, and the difference was statistically significant. APRIL is not expressed on CD4 + T cells, CD8 + T cells.The expression of APRIL mRNA in PBMNCs was significantly higher in ITP patients than in the normal control group (p <0.01). There was no difference in BCMA and TACI expression in PBMNC of ITP patients compared to normal controls.Plasma APRIL levels were significantly higher in ITP patients than in the normal control group, p = 0.04, and negatively correlated with platelet count, p = 0.029.In 10 patients with ITP, the percentage of CD19 + B cells remained similar between patients, and the results showed that the amount of B10 cells in the medium supplemented with APRIL was greater than that of B10 cells containing BLyS and control medium (p<0.01; p= 0.01), and the use of APRIL inhibitors resulted in a decrease in B10 cells. Conclusion: Our study shows that aberrant expression of APRIL is involved in the autoimmune response of ITP, and the effect of treatment can be assessed by measuring changes in the level of APRIL on the platelet surface. We also speculate that APRIL inhibits, rather than promotes, an immune-mediated inflammatory response in the pathogenesis of ITP. Our current observations support that the immunomodulatory effects of APRIL may be due, at least in part, to stimulation of IL-10 producing B cells. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1219-1219
Author(s):  
Yoshitaka Zaimoku ◽  
Bhavisha A Patel ◽  
Sachiko Kajigaya ◽  
Xingmin Feng ◽  
Lemlem Alemu ◽  
...  

Background: Immune aplastic anemia (AA) is caused by cytotoxic T cells (CTLs) that destroy hematopoietic stem and progenitor cells. Regulatory T cells (Tregs) are reduced in AA and increase in response to immunosuppressive therapy (IST; Solomou E et al, Blood 2007). Recent studies suggested an immune regulatory role of regulatory B cells (Bregs). Human CD19+CD24hiCD38hi Bregs suppress Th1 response of CD4+ T cells as well as IFN-γ production by CD8+ CTLs (Mauri C, Menon M, J Clin Invest 2017). The quantity and/or function of Bregs are impaired in autoimmune diseases, malignancies, chronic graft-versus-host disease, and during rejection of transplanted organs. Methods: We investigated B cell phenotypes including CD24hiCD38hi Bregs in previously untreated severe AA (SAA) and very severe AA (VSAA) patients, and healthy individuals aged 18 years and older, and tested their correlation with severity and response to IST. Absolute numbers of lymphocyte subsets, including CD19+ B cells, CD8+ T cells, CD4+ T cells, and NK cell (TBNK), were quantified in fresh blood. Percentages of B cell subsets among total CD19+ B cells, including CD24hiCD38hi Bregs, CD24loCD38lo mature naïve B cells, CD24hiCD38lo memory B cells and CD24loCD38hi plasma cells/plasmablasts, were analyzed using cryopreserved peripheral blood mononuclear cells (PBMCs). Blood samples were obtained from patients close to time of diagnosis and before institution of definitive therapy. All patients were treated with horse anti-thymocyte globulin, cyclosporine, and eltrombopag between 2012 and 2018 at the Hematology Branch, NHLBI (clinicaltrials.gov NCT01623167). Results: TBNK analysis revealed no significant difference in total B cell counts in 104 AA patients compared to 40 healthy individuals (median, 137/μl [IQR, 73-212] vs 163/μl [106-242], P=.11); NK cells were significantly decreased in patients with AA, as previously reported (Gascon P et al, Blood 1986). Total B cell count did not correlate with severity of AA (P=.89) nor with overall response at six months (P=.93). CD8+ T cells and NK cells were lower in VSAA patients compared to SAA patients. None of the TBNK subsets was predictive of overall response in six months after IST. When we assessed the phenotype of B cells among 60 AA patients whose cryopreserved PBMCs were available, CD24hiCD38hi Bregs were markedly decreased as compared to 29 healthy individuals (0.31% [0.14-0.85%] vs 1.9% [1.3-3.6%], P=3×10-7; Figure, Table), while there was no significant difference in other B cell phenotypes. Among these 60 patients, the percentage of CD24hiCD38hi Bregs was especially decreased in VSAA patients compared to SAA (0.18% [0.11-0.34%] vs 0.50% [0.17-1.4%], P=.017). In contrast, CD24loCD38lo mature naïve B cells were higher in VSAA than in SAA (69% [58-86%] vs 60% [42-70%], P=.024). CD24hiCD38hi Breg frequency was positively associated with neutrophil and reticulocyte counts (correlation coefficients [r], 0.34 and 0.26, respectively), while the frequency of CD24loCD38lo mature naïve B cells was negatively correlated (r, -0.34 and -0.40). CD24loCD38lo mature naïve B cells before IST were significantly lower in 47 patients who achieved overall responses at six months compared to 13 non-responders (64% [42-71%), vs 73% [58-88%], P=.014), but CD24hiCD38hi Breg frequency was not correlated with IST responses. At six months after IST, CD24hiCD38hi Bregs in AA patients had recovered to levels present in healthy individuals (2.3% [0.98-4.8%]), in both 34 responders and five non-responders; non-responders showed non-significant increased CD24loCD38lo mature naïve B cells at six months (P=.068). Discussion: A deficit of circulating CD24hiCD38hi Bregs in immune AA with recovery after IST, as occurs with Tregs, suggests Bregs may contribute to the immune pathophysiology in AA. We unexpectedly observed a higher percentage of CD24loCD38lo mature naïve B cells to be associated with more severe disease and a lower probability of responses to IST. B cell phenotype analysis may be beneficial for monitoring of AA and predicting outcomes of therapy. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document