scholarly journals Proteomic as an Exploratory Approach to Develop Vaccines Against Tick-Borne Diseases Using Lyme Borreliosis as a Test Case

Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 463
Author(s):  
Emilie Talagrand-Reboul ◽  
Benoit Westermann ◽  
Matthieu A. Raess ◽  
Gilles Schnell ◽  
Paola Cantero ◽  
...  

Tick-borne diseases affecting humans and animals are on the rise worldwide. Vaccines constitute an effective control measure, but very few are available. We selected Lyme borreliosis, a bacterial infection transmitted by the hard tick Ixodes, to validate a new concept to identify vaccine candidates. This disease is the most common tick-borne disease in the Northern Hemisphere. Although attempts to develop a vaccine exist, none have been successfully marketed. In tick-borne diseases, the skin constitutes a very specific environment encountered by the pathogen during its co-inoculation with tick saliva. In a mouse model, we developed a proteomic approach to identify vaccine candidates in skin biopsies. We identified 30 bacterial proteins after syringe inoculation or tick inoculation of bacteria. Discovery proteomics using mass spectrometry might be used in various tick-borne diseases to identify pathogen proteins with early skin expression. It should help to better develop sub-unit vaccines based on a cocktail of several antigens, associated with effective adjuvant and delivery systems of antigens. In all vector-borne diseases, the skin deserves further investigation to better define its role in the elaboration of protective immunity against pathogens.

Pathogens ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 25
Author(s):  
Abdullah D. Alanazi ◽  
Abdulaziz S. Alouffi ◽  
Mohamed S. Alyousif ◽  
Mohammad Y. Alshahrani ◽  
Hend H. A. M. Abdullah ◽  
...  

Dogs and cats play an important role as reservoirs of vector-borne pathogens, yet reports of canine and feline vector-borne diseases in Saudi Arabia are scarce. Blood samples were collected from 188 free-roaming dogs and cats in Asir (70 dogs and 44 cats) and Riyadh (74 dogs), Saudi Arabia. The presence of Anaplasma spp., Bartonella spp., hemotropic Mycoplasma spp., Babesia spp., and Hepatozoon spp. was detected using a multiplex tandem real-time PCR. PCR-positive samples were further examined with specific conventional and real-time PCR followed by sequencing. Dogs from Riyadh tested negative for all pathogens, while 46 out of 70 dogs (65.7%) and 17 out of 44 cats (38.6%) from Asir were positive for at least one pathogen. Positive dogs were infected with Anaplasma platys (57.1%), Babesia vogeli (30%), Mycoplasma haemocanis (15.7%), and Bartonella henselae (1.4%), and cats were infected with Mycoplasma haemofelis (13.6%), Candidatus Mycoplasma haemominutum (13.6%), B. henselae (9.2%), and A. platys (2.27%), all of which are reported for the first time in Saudi Arabia. Co-infection with A. platys and B. vogeli was detected in 17 dogs (24.28%), while coinfections were not detected in cats. These results suggest that effective control and public awareness strategies for minimizing infection in animals are necessary.


Author(s):  
Giovanni Lo Iacono ◽  
Gordon L. Nichols

The introduction of pasteurization, antibiotics, and vaccinations, as well as improved sanitation, hygiene, and education, were critical in reducing the burden of infectious diseases and associated mortality during the 19th and 20th centuries and were driven by an improved understanding of disease transmission. This advance has led to longer average lifespans and the expectation that, at least in the developed world, infectious diseases were a problem of the past. Unfortunately this is not the case; infectious diseases still have a significant impact on morbidity and mortality worldwide. Moreover, the world is witnessing the emergence of new pathogens, the reemergence of old ones, and the spread of antibiotic resistance. Furthermore, effective control of infectious diseases is challenged by many factors, including natural disasters, extreme weather, poverty, international trade and travel, mass and seasonal migration, rural–urban encroachment, human demographics and behavior, deforestation and replacement with farming, and climate change. The importance of environmental factors as drivers of disease has been hypothesized since ancient times; and until the late 19th century, miasma theory (i.e., the belief that diseases were caused by evil exhalations from unhealthy environments originating from decaying organic matter) was a dominant scientific paradigm. This thinking changed with the microbiology era, when scientists correctly identified microscopic living organisms as the pathogenic agents and developed evidence for transmission routes. Still, many complex patterns of diseases cannot be explained by the microbiological argument alone, and it is becoming increasingly clear that an understanding of the ecology of the pathogen, host, and potential vectors is required. There is increasing evidence that the environment, including climate, can affect pathogen abundance, survival, and virulence, as well as host susceptibility to infection. Measuring and predicting the impact of the environment on infectious diseases, however, can be extremely challenging. Mathematical modeling is a powerful tool to elucidate the mechanisms linking environmental factors and infectious diseases, and to disentangle their individual effects. A common mathematical approach used in epidemiology consists in partitioning the population of interest into relevant epidemiological compartments, typically individuals unexposed to the disease (susceptible), infected individuals, and individuals who have cleared the infection and become immune (recovered). The typical task is to model the transitions from one compartment to another and to estimate how these populations change in time. There are different ways to incorporate the impact of the environment into this class of models. Two interesting examples are water-borne diseases and vector-borne diseases. For water-borne diseases, the environment can be represented by an additional compartment describing the dynamics of the pathogen population in the environment—for example, by modeling the concentration of bacteria in a water reservoir (with potential dependence on temperature, pH, etc.). For vector-borne diseases, the impact of the environment can be incorporated by using explicit relationships between temperature and key vector parameters (such as mortality, developmental rates, biting rate, as well as the time required for the development of the pathogen in the vector). Despite the tremendous advancements, understanding and mapping the impact of the environment on infectious diseases is still a work in progress. Some fundamental aspects, for instance, the impact of biodiversity on disease prevalence, are still a matter of (occasionally fierce) debate. There are other important challenges ahead for the research exploring the potential connections between infectious diseases and the environment. Examples of these challenges are studying the evolution of pathogens in response to climate and other environmental changes; disentangling multiple transmission pathways and the associated temporal lags; developing quantitative frameworks to study the potential effect on infectious diseases due to anthropogenic climate change; and investigating the effect of seasonality. Ultimately, there is an increasing need to develop models for a truly “One Health” approach, that is, an integrated, holistic approach to understand intersections between disease dynamics, environmental drivers, economic systems, and veterinary, ecological, and public health responses.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Georgia Hurry ◽  
Elodie Maluenda ◽  
Anouk Sarr ◽  
Alessandro Belli ◽  
Phineas T. Hamilton ◽  
...  

AbstractArthropod vectors carry vector-borne pathogens that cause infectious disease in vertebrate hosts, and arthropod-associated microbiota, which consists of non-pathogenic microorganisms. Vector-borne pathogens and the microbiota can both influence the fitness of their arthropod vectors, and hence the epidemiology of vector-borne diseases. The bacterium Borrelia afzelii, which causes Lyme borreliosis in Europe, is transmitted among vertebrate reservoir hosts by Ixodes ricinus ticks, which also harbour a diverse microbiota of non-pathogenic bacteria. The purpose of this controlled study was to test whether B. afzelii and the tick-associated microbiota influence the fitness of I. ricinus. Eggs obtained from field-collected adult female ticks were surface sterilized (with bleach and ethanol), which reduced the abundance of the bacterial microbiota in the hatched I. ricinus larvae by 28-fold compared to larvae that hatched from control eggs washed with water. The dysbiosed and control larvae were subsequently fed on B. afzelii-infected or uninfected control mice, and the engorged larvae were left to moult into nymphs under laboratory conditions. I. ricinus larvae that fed on B. afzelii-infected mice had a significantly faster larva-to-nymph moulting time compared to larvae that fed on uninfected control mice, but the effect was small (2.4% reduction) and unlikely to be biologically significant. We found no evidence that B. afzelii infection or reduction of the larval microbiota influenced the four other life history traits of the immature I. ricinus ticks, which included engorged larval weight, unfed nymphal weight, larva-to-nymph moulting success, and immature tick survival. A retrospective power analysis found that our sampling effort had sufficient power (> 80%) to detect small effects (differences of 5% to 10%) of our treatments. Under the environmental conditions of this study, we conclude that B. afzelii and the egg surface microbiota had no meaningful effects on tick fitness and hence on the R0 of Lyme borreliosis.


Author(s):  
Roberta Iatta ◽  
Alireza Sazmand ◽  
Viet-Linh Nguyen ◽  
Farzad Nemati ◽  
Muhammad Mazhar Ayaz ◽  
...  

AbstractCanine vector-borne diseases (CVBDs) are highly prevalent in tropical and subtropical countries, mainly due to favorable climate conditions and reduced adoption of preventive measures. This study aimed to provide a comprehensive overview on the prevalence of CVBDs in Iran and Pakistan where limited data are available. Blood samples were collected from 403 dogs from six provinces in Iran and Pakistan to assess the presence of pathogen DNA (i.e., Anaplasma spp., Coxiella burnetii, Ehrlichia spp., Rickettsia spp., Babesia spp., Hepatozoon spp., filarioids, and Leishmania spp.). Sera were also screened by an immunofluorescence antibody test for the detection of antibodies against Leishmania infantum. In total, 46.9% of dogs scored positive to Hepatozoon canis being the most frequently detected (41.4%), followed by Anaplasma platys (6.4%), Ehrlichia canis (3.4%), Rickettsia spp. (2.2%), Babesia vogeli (1.0%), and L. infantum (0.3%). A seroprevalence of 9.6% to anti-L. infantum IgG was also recorded. Data reported herein demonstrate that dogs from Iran and Pakistan are at a high risk of CVBDs, particularly of canine hepatozoonosis. Effective control strategies are advocated for minimizing the risk of infection in animals and humans, also in consideration of the zoonotic potential of some pathogens detected.


2016 ◽  
Vol 12 (9) ◽  
pp. 2680-2694 ◽  
Author(s):  
Josipa Kuleš ◽  
Anita Horvatić ◽  
Nicolas Guillemin ◽  
Asier Galan ◽  
Vladimir Mrljak ◽  
...  

The availability of omics datasets coupled to high-throughput and bioinformatics analyses enabled rational and faster identification of new generation vaccine candidates.


2019 ◽  
Vol 30 (5) ◽  
pp. 192-194
Author(s):  
John (Luke) Lucas

The author considers the threat to vector-borne diseases in the light of climate change.


2020 ◽  
Vol 14 (1) ◽  
pp. 81-88
Author(s):  
Fedor I. Vasilevich ◽  
Anna M. Nikanorova

The purpose of the research is development of preventive measures against zooanthroponoze vector-borne diseases spread by parasitic arthropods in the Kaluga Region. Materials and methods. The subject of the research was Ixodidae, mosquitoes, and small mammals inhabiting the Kaluga Region. The census of parasitic arthropods was carried out on the territory of all districts of the Kaluga Region and the city of Kaluga. Open natural habitat and human settlements were investigated. Weather conditions from 2013 to 2018 were also taken into account. For the purposes of the study, we used standard methods for capturing and counting arthropods and mouse-like rodents. In order to obtain mathematical models of small mammal populations, a full factorial experiment was conducted using the collected statistical data. In-process testing of the drug based on s-fenvalerate and piperonyl butoxide were carried out under the conditions of the agricultural collective farm “Niva” of the Kozelsky District, the Kaluga Region, and LLC “Angus Center of Genetics” of the Babyninsky District, the Kaluga Region. Results and discussion. In the Kaluga Region, two species of ixodic ticks are found, namely, Ixodes ricinus and Dermacentor reticulatus, which have two activity peaks. Mosquito may have 3-4 generations in a year in the Kaluga region. The most common mosquito species in the Kaluga Region are Aedes communis, Ae. (Och.) togoi and Ae. (Och.) diantaeus, Culex pipiens Culex Linnaeus, 1758 (Diptera, Culicidae) (Culex pipiens): Cx. pipiens f. pipiens L. (non-autogenic form) and Cx. p. f. molestus Fors. (autogenic form), which interbreed, and reproductively isolated in the Region. The developed mathematical models make it possible to quantify the risks of outbreaks of zooanthroponoze vector-borne diseases without the cost of field research, and allow for rational, timely and effective preventive measures. Medications based on s-fenvalerate and piperonyl butoxide and based on cyfluthrin showed high insecto-acaricidal efficacy and safety.


1972 ◽  
Vol 7 (1) ◽  
pp. 13-20
Author(s):  
D.D.P. Cane ◽  
G.J. Farguhar

Abstract A case of filamentous activated sludge bulking was investigated at an extended aeration plant treating wastes from a highway service centre. The purpose of the study was to find an effective control measure for the bulking and, if possible, to determine the cause of the bulking condition. Experiments were conducted to determine the effects upon bulking of: (a) a controlled copper dosage to the mixed liquor, (b) variations in the organic loading rate, and (c) maintenance of high and low dissolved oxygen concentrations in the mixed liquor. The microorganism responsible for the bulking condition was tentatively identified as Sphaerotilus natans. Extensive growths of these bacteria occurred in the sludge when the mixed liquor dissolved oxygen concentration dropped below 0.5 mg/1. Such dissolved oxygen levels had frequently occurred at this plant due to the use of timed aeration cycles and the use of insufficient air supply during peak loading periods. Variations in organic loading rates were found to have no adverse effect on sludge settleability. When bulking was slight, the condition could be improved by increasing the dissolved oxygen level to 1.5 mg/1, or more. The rate at which the filamentous growths could be eliminated from a highly filamentous sludge by increased aeration was very slow, but could be greatly increased by the simultaneous feeding of copper to the mixed liquor at a dosage rate of 1.0 mg/1, based on the raw sewage flows.


Sign in / Sign up

Export Citation Format

Share Document