scholarly journals Pullulan-Coated Iron Oxide Nanoparticles for Blood-Stage Malaria Vaccine Delivery

Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 651
Author(s):  
Liam Powles ◽  
Kirsty L. Wilson ◽  
Sue D. Xiang ◽  
Ross L. Coppel ◽  
Charles Ma ◽  
...  

Vaccines against blood-stage malaria often aim to induce antibodies to neutralize parasite entry into red blood cells, interferon gamma (IFNγ) produced by T helper 1 (Th1) CD4+ T cells or interleukin 4 (IL-4) produced by T helper 2 (Th2) cells to provide B cell help. One vaccine delivery method for suitable putative malaria protein antigens is the use of nanoparticles as vaccine carriers. It has been previously shown that antigen conjugated to inorganic nanoparticles in the viral-particle size range (~40–60 nm) can induce protective antibodies and T cells against malaria antigens in a rodent malaria challenge model. Herein, it is shown that biodegradable pullulan-coated iron oxide nanoparticles (pIONPs) can be synthesized in this same size range. The pIONPs are non-toxic and do not induce conventional pro-inflammatory cytokines in vitro and in vivo. We show that murine blood-stage antigen MSP4/5 from Plasmodium yoelii could be chemically conjugated to pIONPs and the use of these conjugates as immunogens led to the induction of both specific antibodies and IFNγ CD4+ T cells reactive to MSP4/5 in mice, comparable to responses to MSP4/5 mixed with classical adjuvants (e.g., CpG or Alum) that preferentially induce Th1 or Th2 cells individually. These results suggest that biodegradable pIONPs warrant further exploration as carriers for developing blood-stage malaria vaccines.

1996 ◽  
Vol 184 (2) ◽  
pp. 473-483 ◽  
Author(s):  
T Sornasse ◽  
P V Larenas ◽  
K A Davis ◽  
J E de Vries ◽  
H Yssel

The development of CD4+ T helper (Th) type 1 and 2 cells is essential for the eradication of pathogens, but can also be responsible for various pathological disorders. Therefore, modulation of Th cell differentiation may have clinical utility in the treatment of human disease. Here, we show that interleukin (IL) 12 and IL-4 directly induce human neonatal CD4- T cells, activated via CD3 and CD28, to differentiate into Th1 and Th2 subsets. In contrast, IL-13, which shares many biological activities with IL-4, failed to induce T cell differentiation, consistent with the observation that human T cells do not express IL-13 receptors. Both the IL-12-induced Th1 subset and the IL-4-induced Th2 subset produce large quantities of IL-10, confirming that human IL-10 is not a typical human Th2 cytokine. Interestingly, IL-4-driven Th2 cell differentiation was completely prevented by an IL-4 mutant protein (IL-4.Y124D), indicating that this molecule acts as a strong IL-4 receptor antagonist. Analysis of single T cells producing interferon gamma or IL-4 revealed that induction of Th1 cell differentiation occurred rapidly and required only 4 d of priming of the neonatal CD4+ T cells in the presence of IL-12. The IL-12-induced Th1 cell phenotype was stable and was not significantly affected when repeatedly stimulated in the presence of recombinant IL-4. In contrast, the differentiation of Th2 cells occurred slowly and required not only 6 d of priming, but also additional restimulation of the primed CD4+ T cells in the presence of IL-4. Moreover, IL-4-induced Th2 cell phenotypes were not stable and could rapidly be reverted into a population predominantly containing Th0 and Th1 cells, after a single restimulation in the presence of IL-12. The observed differences in stability of IL-12- and IL-4-induced human Th1 and Th2 subsets, respectively, may have implications for cytokine-based therapies of chronic disease.


1997 ◽  
Vol 185 (3) ◽  
pp. 461-470 ◽  
Author(s):  
Mercedes Rincón ◽  
Juan Anguita ◽  
Tetsuo Nakamura ◽  
Erol Fikrig ◽  
Richard A. Flavell

Interleukin (IL)-4 is the most potent factor that causes naive CD4+ T cells to differentiate to the T helper cell (Th) 2 phenotype, while IL-12 and interferon γ trigger the differentiation of Th1 cells. However, the source of the initial polarizing IL-4 remains unclear. Here, we show that IL-6, probably secreted by antigen-presenting cells, is able to polarize naive CD4+ T cells to effector Th2 cells by inducing the initial production of IL-4 in CD4+ T cells. These results show that the nature of the cytokine (IL-12 or IL-6), which is produced by antigen-presenting cells in response to a particular pathogen, is a key factor in determining the nature of the immune response.


1996 ◽  
Vol 183 (6) ◽  
pp. 2669-2674 ◽  
Author(s):  
F Powrie ◽  
J Carlino ◽  
M W Leach ◽  
S Mauze ◽  
R L Coffman

A T helper type 1 (Th1)-mediated colitis with similarities to inflammatory bowel disease in humans developed in severe combined immunodeficiency mice reconstituted with CD45RB(high) CD4+ splenic T cells and could be prevented by cotransfer of CD45RB(low) CD4+ T cells. Inhibition of this Th1 response by the CD45RB(low) T cell population could be reversed in vivo by an anti-transforming growth factor (TGF) beta antibody. Interleukin (IL) 4 was not required for either the differentiation of function of protective cells as CD45RB(low) CD4+ cells from IL-4-deficient mice were fully effective. These results identify a subpopulation of peripheral CD4+ cells and TGF-beta as critical components of the natural immune regulatory mechanism, which prevents the development of pathogenic Th1 responses in the gut, and suggests that this immunoregulatory population is distinct from Th2 cells.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3119-3119
Author(s):  
Shannon P. Hilchey ◽  
Alexander F. Rosenberg ◽  
Ollivier Hyrien ◽  
Shelley Secor-Socha ◽  
Matthew R. Cochran ◽  
...  

Abstract Abstract 3119 Tumor infiltrating T-cells tend to be hypo-functional and this loss of function may be due to intrinsic T-cell defects, impaired antigen (Ag) presentation, and/or suppression induced by extrinsic components of the microenvironment, such as regulatory T-cells (Tregs). Each of these potential mechanisms has distinct implications on the potential efficacy of immunotherapy. To determine the functional potential of follicular lymphoma (FL) derived T-cells, we analyzed, by flow cytometry, T helper (Th) subsets and Staphylococcus enterotoxin B (SEB)-induced cytokine profiles of single cell suspensions from FL involved nodes (FL; n=8), reactive lymph nodes (RLN; n=7) and normal lymph nodes (NLN; n=6; obtained during vascular surgery). SEB was used as it directly triggers the T-cell receptor, abrogating the need for Ag presentation, and overcomes Treg mediated suppression. Herein we show that, relative to NLN, FL has decreased proportions of CD4+ T-cells having either a naïve (CD45RA+) or central memory (CD45RA−CCR7+) phenotype but increased proportions of effector memory T-cells (CD45RA−CCR7−). In addition, a higher percentage of pre-stimulation FL CD4+ T-cells show an activated (CD69+) phenotype as compared to that of RLN or NLN. Upon SEB stimulation, the FL CD4+ T-cells, like those from RLN and NLN, show an additional increase in the proportion of CD69+ cells, demonstrating that the FL derived CD4+ T-cells can be activated even further. We also show that upon stimulation with SEB; (a) the proportion of Th1 cells (IL-2+IFN-g+IL-4−) in FL is similar to that seen in RLN or NLN; (b) in contrast, we observe an increased frequency of primed uncommitted precursor Thpp cells (IL-2+IFN-g−IL-4−) in FL compared to that seen in either RLN or NLN; (c) an increased proportion of Th2 cells in FL compared with NLN and; (d) an increase in the proportion of Th17 cells in FL compared to that in RLN. Lastly, the proportions of FL Th cells producing 3 or 4 cytokines simultaneously, or poly-functional CD4+ T-cells, (PFT; PFT-3 producing IL-2, IFN-g and TNF-a or PFT-4 producing IL-2, IFN-g, TNF-a and MIP-1b), after SEB stimulation is similar to that seen in RLN or NLN. These data suggest that although there is skewed Th cell differentiation in FL, as compared to that of RLN or NLN, the intrinsic ability of the FL Th cells to elicit a clinically relevant effector response (both a Th1 and Th2 response) is fully preserved. In addition, the retention of effector function of FL Th cells is further supported by the fact that the proportions of these Th cells that have poly-functional cytokine profiles after SEB stimulation is similar in FL as compared to RLN or NLN. Indeed, poly-functionality of Th cells has been shown to correlate with the elicitation of protective immunity after vaccination for infectious diseases. Finally, the proportion of uncommitted Thpp cells after SEB stimulation is highest in FL. Thpp cells are non-polarized and can still differentiate into either Th1 or Th2 cells. They can also produce several chemokines and thus may play a role in shaping the FL microenvironment by recruiting other immune-effector cells as well as developing into Th1 and Th2 cells. Taken together, our data shows that FL Th cells are fully functional within the parameters of our assays, suggesting that these cells are intrinsically capable of mediating effective anti-tumor immune responses after immunotherapy. Therefore the hypo-functionality of FL T-cells is likely due to extrinsic factors which suppress T-cell function in vivo. Thus the challenge is to develop immunotherapeutic strategies that overcome these tumor associated extrinsic mechanisms, resulting in effective anti-tumor immunity. Disclosures: No relevant conflicts of interest to declare.


2001 ◽  
Vol 194 (10) ◽  
pp. 1461-1471 ◽  
Author(s):  
Meixia Zhou ◽  
Wenjun Ouyang ◽  
Qian Gong ◽  
Samuel G. Katz ◽  
J. Michael White ◽  
...  

The development of naive CD4+ T cells into a T helper (Th) 2 subset capable of producing interleukin (IL)-4, IL-5, and IL-13 involves a signal transducer and activator of transcription (Stat)6-dependent induction of GATA-3 expression, followed by Stat6-independent GATA-3 autoactivation. The friend of GATA (FOG)-1 protein regulates GATA transcription factor activity in several stages of hematopoietic development including erythrocyte and megakaryocyte differentiation, but whether FOG-1 regulates GATA-3 in T cells is uncertain. We show that FOG-1 can repress GATA-3–dependent activation of the IL-5 promoter in T cells. Also, FOG-1 overexpression during primary activation of naive T cells inhibited Th2 development in CD4+ T cells. FOG-1 fully repressed GATA-3–dependent Th2 development and GATA-3 autoactivation, but not Stat6-dependent induction of GATA-3. FOG-1 overexpression repressed development of Th2 cells from naive T cells, but did not reverse the phenotype of fully committed Th2 cells. Thus, FOG-1 may be one factor capable of regulating the Th2 development.


Langmuir ◽  
2010 ◽  
Vol 26 (8) ◽  
pp. 5843-5847 ◽  
Author(s):  
Pablo Guardia ◽  
Nicolás Pérez ◽  
Amilcar Labarta ◽  
Xavier Batlle

Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4143
Author(s):  
Philipp Boosz ◽  
Felix Pfister ◽  
Rene Stein ◽  
Bernhard Friedrich ◽  
Lars Fester ◽  
...  

T cell infiltration into a tumor is associated with a good clinical prognosis of the patient and adoptive T cell therapy can increase anti-tumor immune responses. However, immune cells are often excluded from tumor infiltration and can lack activation due to the immune-suppressive tumor microenvironment. To make T cells controllable by external forces, we loaded primary human CD3+ T cells with citrate-coated superparamagnetic iron oxide nanoparticles (SPIONs). Since the efficacy of magnetic targeting depends on the amount of SPION loading, we investigated how experimental conditions influence nanoparticle uptake and viability of cells. We found that loading in the presence of serum improved both the colloidal stability of SPIONs and viability of T cells, whereas stimulation with CD3/CD28/CD2 and IL-2 did not influence nanoparticle uptake. Furthermore, SPION loading did not impair cytokine secretion after polyclonal stimulation. We finally achieved 1.4 pg iron loading per cell, which was both located intracellularly in vesicles and bound to the plasma membrane. Importantly, nanoparticles did not spill over to non-loaded cells. Since SPION-loading enabled efficient magnetic accumulation of T cells in vitro under dynamic conditions, we conclude that this might be a good starting point for the investigation of in vivo delivery of immune cells.


2000 ◽  
Vol 191 (2) ◽  
pp. 375-380 ◽  
Author(s):  
Hisaya Akiba ◽  
Yasushi Miyahira ◽  
Machiko Atsuta ◽  
Kazuyoshi Takeda ◽  
Chiyoko Nohara ◽  
...  

Infection of inbred mouse strains with Leishmania major is a well characterized model for analysis of T helper (Th)1 and Th2 cell development in vivo. In this study, to address the role of costimulatory molecules CD27, CD30, 4-1BB, and OX40, which belong to the tumor necrosis factor receptor superfamily, in the development of Th1 and Th2 cells in vivo, we administered monoclonal antibody (mAb) against their ligands, CD70, CD30 ligand (L), 4-1BBL, and OX40L, to mice infected with L. major. Whereas anti-CD70, anti-CD30L, and anti–4-1BBL mAb exhibited no effect in either susceptible BALB/c or resistant C57BL/6 mice, the administration of anti-OX40L mAb abrogated progressive disease in BALB/c mice. Flow cytometric analysis indicated that OX40 was expressed on CD4+ T cells and OX40L was expressed on CD11c+ dendritic cells in the popliteal lymph nodes of L. major–infected BALB/c mice. In vitro stimulation of these CD4+ T cells showed that anti-OX40L mAb treatment resulted in substantially reduced production of Th2 cytokines. Moreover, this change in cytokine levels was associated with reduced levels of anti–L. major immunoglobulin (Ig)G1 and serum IgE. These results indicate that anti-OX40L mAb abrogated progressive leishmaniasis in BALB/c mice by suppressing the development of Th2 responses, substantiating a critical role of OX40–OX40L interaction in Th2 development in vivo.


Sign in / Sign up

Export Citation Format

Share Document