scholarly journals Phenotype of the Aging-Dependent Spontaneous Onset of Hearing Loss in DBA/2 Mice

2021 ◽  
Vol 8 (3) ◽  
pp. 49
Author(s):  
Min-Soo Seo ◽  
Byeonghyeon Lee ◽  
Kyung-Ku Kang ◽  
Soo-Eun Sung ◽  
Joo-Hee Choi ◽  
...  

DBA/2 mice are a well-known animal model for hearing loss developed due to intrinsic properties of these animals. However, results on the phenotype of hearing loss in DBA/2 mice have been mainly reported at an early stage in mice aged ≤7 weeks. Instead, the present study evaluated the hearing ability at 5, 13, and 34 weeks of age using DBA/2korl mice. Auditory brainstem response test was performed at 8–32 KHz at 5, 13, and 34 weeks of age, and hearing loss was confirmed to be induced in a time-dependent manner. In addition, histopathological evaluation at the same age confirmed the morphological damage of the cochlea. The findings presented herein are the results of the long-term observation of the phenotype of hearing loss in DBA/2 mice and can be useful in studies related to aging-dependent hearing loss.

2017 ◽  
Vol 22 (2) ◽  
pp. 96-103 ◽  
Author(s):  
Qiuhong Huang ◽  
Yongkang Ou ◽  
Hao Xiong ◽  
Haidi Yang ◽  
Zhigang Zhang ◽  
...  

Hypothesis: The miR-34a/Bcl-2 signaling pathway may play a role in the mechanisms related to age-related hearing loss (AHL) in the auditory cortex. Background: The auditory cortex plays a key role in the recognition and processing of complex sound. It is difficult to explain why patients with AHL have poor speech recognition, so increasing numbers of studies have focused on its central change. Although micro (mi)RNAs in the central nervous system have recently been increasingly reported to be associated with age-related diseases, the molecular mechanisms of AHL in the auditory cortex are not fully understood. Methods: The auditory brainstem response was used to assess the hearing ability of C57BL/6 mice, and q-PCR, immunohistochemistry, and Western blotting were used to detect the expression levels of miR-34a and Bcl-2 in the mouse auditory cortex. TUNEL and DNA fragmentation were adopted to detect the apoptosis of neurons in the auditory cortex. To verify the relationship of miR-34a and Bcl-2, we transfected an miR-34a mimic or miR-34a inhibitor into primary auditory cortex neurons. Results: In this study, miR-34a/Bcl-2 signaling was examined in auditory cortex neurons during aging. miR-34a and apoptosis increased in the auditory cortex neurons of C57BL/6 mice with aging, whereas an age-related decrease in Bcl-2 was determined. In the primary neurons of the auditory cortex, miR-34a overexpression inhibited Bcl-2, leading to an increase in apoptosis. Moreover, miR-34a knockdown increased Bcl-2 expression and diminished apoptosis. Conclusion: Our results support a link between age-related apoptosis in auditory cortex neurons and miR-34a/Bcl-2 signaling, which may serve as a potential mechanism of the expression of AHL in the auditory cortex.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xi Gu ◽  
Daqi Wang ◽  
Zhijiao Xu ◽  
Jinghan Wang ◽  
Luo Guo ◽  
...  

Abstract Background Aging, noise, infection, and ototoxic drugs are the major causes of human acquired sensorineural hearing loss, but treatment options are limited. CRISPR/Cas9 technology has tremendous potential to become a new therapeutic modality for acquired non-inherited sensorineural hearing loss. Here, we develop CRISPR/Cas9 strategies to prevent aminoglycoside-induced deafness, a common type of acquired non-inherited sensorineural hearing loss, via disrupting the Htra2 gene in the inner ear which is involved in apoptosis but has not been investigated in cochlear hair cell protection. Results The results indicate that adeno-associated virus (AAV)-mediated delivery of CRISPR/SpCas9 system ameliorates neomycin-induced apoptosis, promotes hair cell survival, and significantly improves hearing function in neomycin-treated mice. The protective effect of the AAV–CRISPR/Cas9 system in vivo is sustained up to 8 weeks after neomycin exposure. For more efficient delivery of the whole CRISPR/Cas9 system, we also explore the AAV–CRISPR/SaCas9 system to prevent neomycin-induced deafness. The in vivo editing efficiency of the SaCas9 system is 1.73% on average. We observed significant improvement in auditory brainstem response thresholds in the injected ears compared with the non-injected ears. At 4 weeks after neomycin exposure, the protective effect of the AAV–CRISPR/SaCas9 system is still obvious, with the improvement in auditory brainstem response threshold up to 50 dB at 8 kHz. Conclusions These findings demonstrate the safe and effective prevention of aminoglycoside-induced deafness via Htra2 gene editing and support further development of the CRISPR/Cas9 technology in the treatment of non-inherited hearing loss as well as other non-inherited diseases.


2021 ◽  
Vol 22 (6) ◽  
pp. 2853
Author(s):  
Judit Szepesy ◽  
Viktória Humli ◽  
János Farkas ◽  
Ildikó Miklya ◽  
Júlia Tímár ◽  
...  

Age-related hearing loss (ARHL), a sensorineural hearing loss of multifactorial origin, increases its prevalence in aging societies. Besides hearing aids and cochlear implants, there is no FDA approved efficient pharmacotherapy to either cure or prevent ARHL. We hypothesized that selegiline, an antiparkinsonian drug, could be a promising candidate for the treatment due to its complex neuroprotective, antioxidant, antiapoptotic, and dopaminergic neurotransmission enhancing effects. We monitored by repeated Auditory Brainstem Response (ABR) measurements the effect of chronic per os selegiline administration on the hearing function in BALB/c and DBA/2J mice, which strains exhibit moderate and rapid progressive high frequency hearing loss, respectively. The treatments were started at 1 month of age and lasted until almost a year and 5 months of age, respectively. In BALB/c mice, 4 mg/kg selegiline significantly mitigated the progression of ARHL at higher frequencies. Used in a wide dose range (0.15–45 mg/kg), selegiline had no effect in DBA/2J mice. Our results suggest that selegiline can partially preserve the hearing in certain forms of ARHL by alleviating its development. It might also be otoprotective in other mammals or humans.


2003 ◽  
Vol 14 (03) ◽  
pp. 134-143 ◽  
Author(s):  
James J. Klemens ◽  
Robert P. Meech ◽  
Larry F. Hughes ◽  
Satu Somani ◽  
Kathleen C.M. Campbell

This study's purpose was to determine if a correlation exists between cochlear antioxidant activity changes and auditory function after induction of aminoglycoside (AG) ototoxicity. Two groups of five 250-350 g albino guinea pigs served as subjects. For 28 days, albino guinea pigs were administered either 200 mg/kg/day amikacin, or saline subcutaneously. Auditory brainstem response testing was performed prior to the first injection and again before sacrifice, 28 days later. Cochleae were harvested and superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase activities and malondialdehyde levels were measured. All antioxidant enzymes had significantly lower activity in the amikacin group (p ≤ 0.05) than in the control group. The difference in cochlear antioxidant enzyme activity between groups inversely correlated significantly with the change in ABR thresholds. The greatest correlation was for the high frequencies, which are most affected by aminoglycosides. This study demonstrates that antioxidant enzyme activity and amikacin-induced hearing loss significantly covary.


Sign in / Sign up

Export Citation Format

Share Document