scholarly journals Genotyping of African Swine Fever Virus (ASFV) Isolates in Romania with the First Report of Genotype II in Symptomatic Pigs

2021 ◽  
Vol 8 (12) ◽  
pp. 290
Author(s):  
Andrei Ungur ◽  
Cristina Daniela Cazan ◽  
Luciana Cătălina Panait ◽  
Marian Taulescu ◽  
Oana Maria Balmoș ◽  
...  

The World Organisation for Animal Health has listed African swine fever as the most important deadly disease in domestic swine around the world. The virus was recently brought from South-East Africa to Georgia in 2007, and it has since expanded to Russia, Eastern Europe, China, and Southeast Asia, having a devastating impact on the global swine industry and economy. In this study, we report for the first time the molecular characterization of nine African swine fever virus (ASFV) isolates obtained from domestic pigs in Mureş County, Romania. All nine Romanian samples clustered within p72 genotype II and showed 100% identity with all compared isolates from Georgia, Armenia, Russia, Azerbaijan, Ukraine, Belarus, Lithuania, and Poland. This is the first report of ASFV genotype II in the country.

2017 ◽  
Vol 91 (21) ◽  
Author(s):  
Paula L. Monteagudo ◽  
Anna Lacasta ◽  
Elisabeth López ◽  
Laia Bosch ◽  
Javier Collado ◽  
...  

ABSTRACT African swine fever is a highly contagious viral disease of mandatory declaration to the World Organization for Animal Health (OIE). The lack of available vaccines makes its control difficult; thus, African swine fever virus (ASFV) represents a major threat to the swine industry. Inactivated vaccines do not confer solid protection against ASFV. Conversely, live attenuated viruses (LAV), either naturally isolated or obtained by genetic manipulation, have demonstrated reliable protection against homologous ASFV strains, although little or no protection has been demonstrated against heterologous viruses. Safety concerns are a major issue for the use of ASFV attenuated vaccine candidates and have hampered their implementation in the field so far. While trying to develop safer and efficient ASFV vaccines, we found that the deletion of the viral CD2v (EP402R) gene highly attenuated the virulent BA71 strain in vivo. Inoculation of pigs with the deletion mutant virus BA71ΔCD2 conferred protection not only against lethal challenge with the parental BA71 but also against the heterologous E75 (both genotype I strains). The protection induced was dose dependent, and the cross-protection observed in vivo correlated with the ability of BA71ΔCD2 to induce specific CD8+ T cells capable of recognizing both BA71 and E75 viruses in vitro. Interestingly, 100% of the pigs immunized with BA71ΔCD2 also survived lethal challenge with Georgia 2007/1, the genotype II strain of ASFV currently circulating in continental Europe. These results open new avenues to design ASFV cross-protective vaccines, essential to fight ASFV in areas where the virus is endemic and where multiple viruses are circulating. IMPORTANCE African swine fever virus (ASFV) remains enzootic in most countries of Sub-Saharan Africa, today representing a major threat for the development of their swine industry. The uncontrolled presence of ASFV has favored its periodic exportation to other countries, the last event being in Georgia in 2007. Since then, ASFV has spread toward neighboring countries, reaching the European Union's east border in 2014. The lack of available vaccines against ASFV makes its control difficult; so far, only live attenuated viruses have demonstrated solid protection against homologous experimental challenges, but they have failed at inducing solid cross-protective immunity against heterologous viruses. Here we describe a new LAV candidate with unique cross-protective abilities: BA71ΔCD2. Inoculation of BA71ΔCD2 protected pigs not only against experimental challenge with BA71, the virulent parental strain, but also against heterologous viruses, including Georgia 2007/1, the genotype II strain of ASFV currently circulating in Eastern Europe.


Viruses ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1129 ◽  
Author(s):  
Ferenc Olasz ◽  
István Mészáros ◽  
Szilvia Marton ◽  
Győző L. Kaján ◽  
Vivien Tamás ◽  
...  

In the recent years, African swine fever has become the biggest animal health threat to the swine industry. To facilitate quick genetic analysis of its causative agent, the African swine fever virus (ASFV), we developed a simple and efficient method for next generation sequencing of the viral DNA. Execution of the protocol does not demand complicated virus purification steps, enrichment of the virus by ultracentrifugation or of the viral DNA by ASFV-specific PCRs, and minimizes the use of Sanger sequencing. Efficient DNA-se treatment, monitoring of sample preparation by qPCR, and whole genome amplification are the key elements of the method. Through detailed description of sequencing of the first Hungarian ASFV isolate (ASFV_HU_2018), we specify the sensitive steps and supply key reference numbers to assist reproducibility and to facilitate the successful use of the method for other ASFV researchers.


Vaccines ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 56 ◽  
Author(s):  
Natasha N. Gaudreault ◽  
Juergen A. Richt

African swine fever virus (ASFV) is the cause of a highly fatal disease in swine, for which there is no available vaccine. The disease is highly contagious and poses a serious threat to the swine industry worldwide. Since its introduction to the Caucasus region in 2007, a highly virulent, genotype II strain of ASFV has continued to circulate and spread into Eastern Europe and Russia, and most recently into Western Europe, China, and various countries of Southeast Asia. This review summarizes various ASFV vaccine strategies that have been investigated, with focus on antigen-, DNA-, and virus vector-based vaccines. Known ASFV antigens and the determinants of protection against ASFV versus immunopathological enhancement of infection and disease are also discussed.


2021 ◽  
Vol 10 (26) ◽  
Author(s):  
Adeyinka J. Adedeji ◽  
Pam D. Luka ◽  
Rebecca B. Atai ◽  
Toyin A. Olubade ◽  
Dupe A. Hambolu ◽  
...  

A confirmed African swine fever (ASF) outbreak in Nigeria was further investigated by partial sequencing of B464L and E183L genes of the ASF virus (ASFV). Results revealed the first-time presence of ASFV genotype II in Nigeria and West Africa. This finding has serious implications for control measures and food security.


Author(s):  
Jianhe Hu ◽  
Halyna Rebenko ◽  
Jingjing Zhang

African swine fever remains one of most economically threatened diseases that has been hurting to the swine industry in Ukraine since 2014 and in China since 2018. African swine fever is an acute, highly lethal infectious disease caused by African swine fever virus, which has occurred and spread in many countries around the world, causing a catastrophic blow to the swine industry in the affected countries. ASFV is characterized of large genome, encoding 150-200 proteins, including variety of immunoregulatory proteins, which can resist immunity. African swine fever virus mainly enters pigs through the respiratory and digestive tract. The target cells infected are mainly mononuclear-macrophages, and the receptor is still unclear. Research on the development of diagnostic techniques and tests related to African swine fever are continuing and their proper using is crucial. There are many studies on African swine fever virus vaccines, including inactivated vaccines, attenuated vaccines, subunit vaccines and genetic vaccines. But so far these vaccines have not been able to protect domestic pigs from African swine fever virus infection. The article mainly reviews the researches of ASF virus, epidemiology, pathogenesis, diagnostic techniques and attempts to vaccine`s develop, that provides theoretical basis for the prevention and control of ASF.


Pathogens ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 582 ◽  
Author(s):  
Annika Vilem ◽  
Imbi Nurmoja ◽  
Tarmo Niine ◽  
Taavi Riit ◽  
Raquel Nieto ◽  
...  

After the extensive spread of the African swine fever virus (ASFV) genotype II in Eastern Europe, the first case of African swine fever (ASF) in Estonia was diagnosed in September 2014. By the end of 2019, 3971 ASFV-positive wild boars were found, and 27 domestic pig outbreaks were reported. A selection of ASFV isolates from wild boar and domestic pigs (during the period of September 2014–2019) was molecularly characterized using standardized genotyping procedures. One of the proven markers to characterize this virus is the central variable region (CVR) within the B602L gene. In summer 2015, a new ASFV genotype II CVR variant 2 (GII-CVR2) was confirmed in Estonia. The results suggest that the GII-CVR2 variant was only confirmed in wild boar from a limited area in southern Estonia in 2015 and 2016. In addition to GII-CVR2, a single nucleotide polymorphism (SNP) that resulted in amino acid change was identified within the genotype II CVR variant 1 (GII-CVR1). The GII-CVR1/SNP1 strain was isolated in Estonia in November 2016. Additional GII-CVR1/SNP1 cases were confirmed in two neighbouring counties, as well as in one outbreak farm in June 2017. Based on the available data, no GII-CVR2 and GII-CVR1/SNP1 have been reported by other affected European countries. The spread of variant strains in Estonia has been limited over time, and restricted to a relatively small area.


2018 ◽  
pp. 21-25
Author(s):  
D. N. Fedoseyeva ◽  
Ye. V. Aronova ◽  
A. A. Varentsova ◽  
A. A. Yelsukova ◽  
Ali Mazloum ◽  
...  

The paper describes the results of testing of biomaterial from domestic pigs and wild boars by real-time PCR used for African swine fever virus genome detection, carried out in the FGBI “Federal Centre for Animal Health” (Vladimir). In 2017 8,500 samples from 44 subjects of the Russian Federation were tested within the framework of the state laboratory monitoring. African swine fever virus genome was detected in 504 samples. In 2017 ASF outbreaks were registered in the Urals and Siberian Federal Districts of the RF for the first time. The conducted research and persistent ASF infection in the territory of the RF have demonstrated the need for further surveillance in the populations of susceptible animals. Development, organization and implementation of the program for ASF spread surveillance in wild fauna remains a high priority. It is necessary to create and implement sampling schedules with uniform sampling of biomaterial and submission of the collected samples to the research laboratories for timely ASF outbreak containment at the regional level.


Sign in / Sign up

Export Citation Format

Share Document