scholarly journals BA71ΔCD2: a New Recombinant Live Attenuated African Swine Fever Virus with Cross-Protective Capabilities

2017 ◽  
Vol 91 (21) ◽  
Author(s):  
Paula L. Monteagudo ◽  
Anna Lacasta ◽  
Elisabeth López ◽  
Laia Bosch ◽  
Javier Collado ◽  
...  

ABSTRACT African swine fever is a highly contagious viral disease of mandatory declaration to the World Organization for Animal Health (OIE). The lack of available vaccines makes its control difficult; thus, African swine fever virus (ASFV) represents a major threat to the swine industry. Inactivated vaccines do not confer solid protection against ASFV. Conversely, live attenuated viruses (LAV), either naturally isolated or obtained by genetic manipulation, have demonstrated reliable protection against homologous ASFV strains, although little or no protection has been demonstrated against heterologous viruses. Safety concerns are a major issue for the use of ASFV attenuated vaccine candidates and have hampered their implementation in the field so far. While trying to develop safer and efficient ASFV vaccines, we found that the deletion of the viral CD2v (EP402R) gene highly attenuated the virulent BA71 strain in vivo. Inoculation of pigs with the deletion mutant virus BA71ΔCD2 conferred protection not only against lethal challenge with the parental BA71 but also against the heterologous E75 (both genotype I strains). The protection induced was dose dependent, and the cross-protection observed in vivo correlated with the ability of BA71ΔCD2 to induce specific CD8+ T cells capable of recognizing both BA71 and E75 viruses in vitro. Interestingly, 100% of the pigs immunized with BA71ΔCD2 also survived lethal challenge with Georgia 2007/1, the genotype II strain of ASFV currently circulating in continental Europe. These results open new avenues to design ASFV cross-protective vaccines, essential to fight ASFV in areas where the virus is endemic and where multiple viruses are circulating. IMPORTANCE African swine fever virus (ASFV) remains enzootic in most countries of Sub-Saharan Africa, today representing a major threat for the development of their swine industry. The uncontrolled presence of ASFV has favored its periodic exportation to other countries, the last event being in Georgia in 2007. Since then, ASFV has spread toward neighboring countries, reaching the European Union's east border in 2014. The lack of available vaccines against ASFV makes its control difficult; so far, only live attenuated viruses have demonstrated solid protection against homologous experimental challenges, but they have failed at inducing solid cross-protective immunity against heterologous viruses. Here we describe a new LAV candidate with unique cross-protective abilities: BA71ΔCD2. Inoculation of BA71ΔCD2 protected pigs not only against experimental challenge with BA71, the virulent parental strain, but also against heterologous viruses, including Georgia 2007/1, the genotype II strain of ASFV currently circulating in Eastern Europe.

Vaccines ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 56 ◽  
Author(s):  
Natasha N. Gaudreault ◽  
Juergen A. Richt

African swine fever virus (ASFV) is the cause of a highly fatal disease in swine, for which there is no available vaccine. The disease is highly contagious and poses a serious threat to the swine industry worldwide. Since its introduction to the Caucasus region in 2007, a highly virulent, genotype II strain of ASFV has continued to circulate and spread into Eastern Europe and Russia, and most recently into Western Europe, China, and various countries of Southeast Asia. This review summarizes various ASFV vaccine strategies that have been investigated, with focus on antigen-, DNA-, and virus vector-based vaccines. Known ASFV antigens and the determinants of protection against ASFV versus immunopathological enhancement of infection and disease are also discussed.


2014 ◽  
Vol 89 (4) ◽  
pp. 2324-2332 ◽  
Author(s):  
Peter W. Krug ◽  
Lauren G. Holinka ◽  
Vivian O'Donnell ◽  
Bo Reese ◽  
Brenton Sanford ◽  
...  

ABSTRACTAfrican swine fever virus (ASFV) causes a contagious and often lethal disease of feral and domestic swine. Experimental vaccines derived from naturally occurring, genetically modified, or cell culture-adapted ASFV have been evaluated, but no commercial vaccine is available to control African swine fever (ASF). We report here the genotypic and phenotypic analysis of viruses obtained at different passages during the process of adaptation of a virulent ASFV field isolate from the Republic of Georgia (ASFV-G) to grow in cultured cell lines. ASFV-G was successively passaged 110 times in Vero cells. Viruses obtained at passages 30, 60, 80, and 110 were evaluatedin vitrofor the ability to replicate in Vero cells and primary swine macrophages cultures andin vivofor assessing virulence in swine. Replication of ASFV-G in Vero cells increased with successive passages, corresponding to a decreased replication in primary swine macrophages cultures.In vivo, progressive loss of virus virulence was observed with increased passages in Vero cells, and complete attenuation of ASFV-G was observed at passage 110. Infection of swine with the fully attenuated virus did not confer protection against challenge with virulent parental ASFV-G. Full-length sequence analysis of each of these viruses revealed significant deletions that gradually accumulated in specific areas at the right and left variable ends of the genome. Mutations that result in amino acid substitutions and frameshift mutations were also observed, though in a rather limited number of genes. The potential importance of these genetic changes in virus adaptation/attenuation is discussed.IMPORTANCEThe main problem in controlling ASF is the lack of vaccines. Attempts to produce vaccines by adaptation of ASFV to cultured cell lines have been made. These attempts led to the production of attenuated viruses that conferred only homologous protection. Specifics regarding adaptation of these isolates to cell cultures have been insufficiently described. Details like the numbers of passages required to obtain attenuated viruses, genetic modifications introduced into the virus genomes along passages, and the extent of attenuation and induced protective efficacy are not readily available. In this study, we assessed the changes that lead to decreased growth in swine macrophages and to attenuation in swine. Loss of virulence, probably associated with limited replicationin vivo, may lead to the lack of protective immunity in swine observed after challenge. This report provides valuable information that can be used to further the understanding of ASFV gene function, virus attenuation, and protection against infection.


2021 ◽  
Vol 8 (12) ◽  
pp. 290
Author(s):  
Andrei Ungur ◽  
Cristina Daniela Cazan ◽  
Luciana Cătălina Panait ◽  
Marian Taulescu ◽  
Oana Maria Balmoș ◽  
...  

The World Organisation for Animal Health has listed African swine fever as the most important deadly disease in domestic swine around the world. The virus was recently brought from South-East Africa to Georgia in 2007, and it has since expanded to Russia, Eastern Europe, China, and Southeast Asia, having a devastating impact on the global swine industry and economy. In this study, we report for the first time the molecular characterization of nine African swine fever virus (ASFV) isolates obtained from domestic pigs in Mureş County, Romania. All nine Romanian samples clustered within p72 genotype II and showed 100% identity with all compared isolates from Georgia, Armenia, Russia, Azerbaijan, Ukraine, Belarus, Lithuania, and Poland. This is the first report of ASFV genotype II in the country.


Viruses ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1474
Author(s):  
Elisabeth Lopez ◽  
Juanita van Heerden ◽  
Laia Bosch-Camós ◽  
Francesc Accensi ◽  
Maria Jesus Navas ◽  
...  

African swine fever (ASF) has become the major threat for the global swine industry. Furthermore, the epidemiological situation of African swine fever virus (ASFV) in some endemic regions of Sub-Saharan Africa is worse than ever, with multiple virus strains and genotypes currently circulating in a given area. Despite the recent advances on ASF vaccine development, there are no commercial vaccines yet, and most of the promising vaccine prototypes available today have been specifically designed to fight the genotype II strains currently circulating in Europe, Asia, and Oceania. Previous results from our laboratory have demonstrated the ability of BA71∆CD2, a recombinant LAV lacking CD2v, to confer protection against homologous (BA71) and heterologous genotype I (E75) and genotype II (Georgia2007/01) ASFV strains, both belonging to same clade (clade C). Here, we extend these results using BA71∆CD2 as a tool trying to understand ASFV cross-protection, using phylogenetically distant ASFV strains. We first observed that five out of six (83.3%) of the pigs immunized once with 106 PFU of BA71∆CD2 survived the tick-bite challenge using Ornithodoros sp. soft ticks naturally infected with RSA/11/2017 strain (genotype XIX, clade D). Second, only two out of six (33.3%) survived the challenge with Ken06.Bus (genotype IX, clade A), which is phylogenetically more distant to BA71∆CD2 than the RSA/11/2017 strain. On the other hand, homologous prime-boosting with BA71∆CD2 only improved the survival rate to 50% after Ken06.Bus challenge, all suffering mild ASF-compatible clinical signs, while 100% of the pigs immunized with BA71∆CD2 and boosted with the parental BA71 virulent strain survived the lethal challenge with Ken06.Bus, without almost no clinical signs of the disease. Our results confirm that cross-protection is a multifactorial phenomenon that not only depends on sequence similarity. We believe that understanding this complex phenomenon will be useful for designing future vaccines for ASF-endemic areas.


2002 ◽  
Vol 76 (7) ◽  
pp. 3095-3104 ◽  
Author(s):  
J. G. Neilan ◽  
L. Zsak ◽  
Z. Lu ◽  
G. F. Kutish ◽  
C. L. Afonso ◽  
...  

ABSTRACT Previously we have shown that the African swine fever virus (ASFV) NL gene deletion mutant E70ΔNL is attenuated in pigs. Our recent observations that NL gene deletion mutants of two additional pathogenic ASFV isolates, Malawi Lil-20/1 and Pr4, remained highly virulent in swine (100% mortality) suggested that these isolates encoded an additional virulence determinant(s) that was absent from E70. To map this putative virulence determinant, in vivo marker rescue experiments were performed by inoculating swine with infection-transfection lysates containing E70 NL deletion mutant virus (E70ΔNL) and cosmid DNA clones from the Malawi NL gene deletion mutant (MalΔNL). A cosmid clone representing the left-hand 38-kb region (map units 0.05 to 0.26) of the MalΔNL genome was capable of restoring full virulence to E70ΔNL. Southern blot analysis of recovered virulent viruses confirmed that they were recombinant E70ΔNL genomes containing a 23- to 28-kb DNA fragment of the Malawi genome. These recombinants exhibited an unaltered MalΔNL disease and virulence phenotype when inoculated into swine. Additional in vivo marker rescue experiments identified a 20-kb fragment, encoding members of multigene families (MGF) 360 and 530, as being capable of fully restoring virulence to E70ΔNL. Comparative nucleotide sequence analysis of the left variable region of the E70ΔNL and Malawi Lil-20/1 genomes identified an 8-kb deletion in the E70ΔNL isolate which resulted in the deletion and/or truncation of three MGF 360 genes and four MGF 530 genes. A recombinant MalΔNL deletion mutant lacking three members of each MGF gene family was constructed and evaluated for virulence in swine. The mutant virus replicated normally in macrophage cell culture but was avirulent in swine. Together, these results indicate that a region within the left variable region of the ASFV genome containing the MGF 360 and 530 genes represents a previously unrecognized virulence determinant for domestic swine.


2013 ◽  
Vol 87 (17) ◽  
pp. 9780-9787 ◽  
Author(s):  
M. Redrejo-Rodriguez ◽  
J. M. Rodriguez ◽  
C. Suarez ◽  
J. Salas ◽  
M. L. Salas

1998 ◽  
Vol 72 (4) ◽  
pp. 2881-2889 ◽  
Author(s):  
M. V. Borca ◽  
C. Carrillo ◽  
L. Zsak ◽  
W. W. Laegreid ◽  
G. F. Kutish ◽  
...  

ABSTRACT An African swine fever virus (ASFV) gene with similarity to the T-lymphocyte surface antigen CD2 has been found in the pathogenic African isolate Malawi Lil-20/1 (open reading frame [ORF] 8-DR) and a cell culture-adapted European virus, BA71V (ORF EP402R) and has been shown to be responsible for the hemadsorption phenomenon observed for ASFV-infected cells. The structural and functional similarities of the ASFV gene product to CD2, a cellular protein involved in cell-cell adhesion and T-cell-mediated immune responses, suggested a possible role for this gene in tissue tropism and/or immune evasion in the swine host. In this study, we constructed an ASFV 8-DR gene deletion mutant (Δ8-DR) and its revertant (8-DR.R) from the Malawi Lil-20/1 isolate to examine gene function in vivo. In vitro, Δ8-DR, 8-DR.R, and the parental virus exhibited indistinguishable growth characteristics on primary porcine macrophage cell cultures. In vivo,8-DR had no obvious effect on viral virulence in domestic pigs; disease onset, disease course, and mortality were similar for the mutant Δ8-DR, its revertant 8-DR.R, and the parental virus. Altered viral infection was, however, observed for pigs infected with Δ8-DR. A delay in spread to and/or replication of Δ8-DR in the draining lymph node, a delay in generalization of infection, and a 100- to 1,000-fold reduction in virus titers in lymphoid tissue and bone marrow were observed. Onset of viremia for Δ8-DR-infected animals was significantly delayed (by 2 to 5 days), and mean viremia titers were reduced approximately 10,000-fold at 5 days postinfection and 30- to 100-fold at later times; moreover, unlike in 8-DR.R-infected animals, the viremia was no longer predominantly erythrocyte associated but rather was equally distributed among erythrocyte, leukocyte, and plasma fractions. Mitogen-dependent lymphocyte proliferation of swine peripheral blood mononuclear cells in vitro was reduced by 90 to 95% following infection with 8-DR.R but remained unaltered following infection with Δ8-DR, suggesting that 8-DR has immunosuppressive activity in vitro. Together, these results suggest an immunosuppressive role for 8-DR in the swine host which facilitates early events in viral infection. This may be of most significance for ASFV infection of its highly adapted natural host, the warthog.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Rémi Pereira De Oliveira ◽  
Evelyne Hutet ◽  
Renaud Lancelot ◽  
Frédéric Paboeuf ◽  
Maxime Duhayon ◽  
...  

Abstract Background Several species of soft ticks in genus Ornithodoros are known vectors and reservoirs of African swine fever virus (ASFV). However, the underlying mechanisms of vector competence for ASFV across Ornithodoros species remain to be fully understood. To that end, this study compared ASFV replication and dissemination as well as virus vertical transmission to descendants between Ornithodorosmoubata, O. erraticus, and O. verrucosus in relation to what is known about the ability of these soft tick species to transmit ASFV to pigs. To mimic the natural situation, a more realistic model was used where soft ticks were exposed to ASFV by allowing them to engorge on viremic pigs. Methods Ornithodoros moubata ticks were infected with the ASFV strains Liv13/33 (genotype I) or Georgia2007/1 (genotype II), O. erraticus with OurT88/1 (genotype I) or Georgia2007/1 (genotype II), and O. verrucosus with Ukr12/Zapo (genotype II), resulting in five different tick–virus pairs. Quantitative PCR (qPCR) assays targeting the VP72 ASFV gene was carried out over several months on crushed ticks to study viral replication kinetics. Viral titration assays were also carried out on crushed ticks 2 months post infection to confirm virus survival in soft ticks. Ticks were dissected. and DNA was individually extracted from the following organs to study ASFV dissemination: intestine, salivary glands, and reproductive organs. DNA extracts from each organ were tested by qPCR. Lastly, larval or first nymph-stage progeny emerging from hatching eggs were tested by qPCR to assess ASFV vertical transmission. Results Comparative analyses revealed higher rates of ASFV replication and dissemination in O. moubata infected with Liv13/33, while the opposite was observed for O. erraticus infected with Georgia2007/1 and for O. verrucosus with Ukr12/Zapo. Intermediate profiles were found for O. moubata infected with Georgia2007/1 and for O. erraticus with OurT88/1. Vertical transmission occurred efficiently in O. moubata infected with Liv13/33, and at very low rates in O. erraticus infected with OurT88/1. Conclusions This study provides molecular data indicating that viral replication and dissemination in Ornithodoros ticks are major mechanisms underlying ASFV horizontal and vertical transmission. However, our results indicate that other determinants beyond viral replication also influence ASFV vector competence. Further research is required to fully understand this process in soft ticks.


Viruses ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1129 ◽  
Author(s):  
Ferenc Olasz ◽  
István Mészáros ◽  
Szilvia Marton ◽  
Győző L. Kaján ◽  
Vivien Tamás ◽  
...  

In the recent years, African swine fever has become the biggest animal health threat to the swine industry. To facilitate quick genetic analysis of its causative agent, the African swine fever virus (ASFV), we developed a simple and efficient method for next generation sequencing of the viral DNA. Execution of the protocol does not demand complicated virus purification steps, enrichment of the virus by ultracentrifugation or of the viral DNA by ASFV-specific PCRs, and minimizes the use of Sanger sequencing. Efficient DNA-se treatment, monitoring of sample preparation by qPCR, and whole genome amplification are the key elements of the method. Through detailed description of sequencing of the first Hungarian ASFV isolate (ASFV_HU_2018), we specify the sensitive steps and supply key reference numbers to assist reproducibility and to facilitate the successful use of the method for other ASFV researchers.


2017 ◽  
Vol 145 (13) ◽  
pp. 2787-2796 ◽  
Author(s):  
J. P. NIELSEN ◽  
T. S. LARSEN ◽  
T. HALASA ◽  
L. E. CHRISTIANSEN

SUMMARYThe spread of African swine fever virus (ASFV) threatens to reach further parts of Europe. In countries with a large swine production, an outbreak of ASF may result in devastating economic consequences for the swine industry. Simulation models can assist decision makers setting up contingency plans. This creates a need for estimation of parameters. This study presents a new analysis of a previously published study. A full likelihood framework is presented including the impact of model assumptions on the estimated transmission parameters. As animals were only tested every other day, an interpretation was introduced to cover the weighted infectiousness on unobserved days for the individual animals (WIU). Based on our model and the set of assumptions, the within- and between-pen transmission parameters were estimated to βw = 1·05 (95% CI 0·62–1·72), βb = 0·46 (95% CI 0·17–1·00), respectively, and the WIU = 1·00 (95% CI 0–1). Furthermore, we simulated the spread of ASFV within a pig house using a modified SEIR-model to establish the time from infection of one animal until ASFV is detected in the herd. Based on a chosen detection limit of 2·55% equivalent to 10 dead pigs out of 360, the disease would be detected 13–19 days after introduction.


Sign in / Sign up

Export Citation Format

Share Document