scholarly journals Frequency-Adaptable Tuned Mass Damper Using Metal Cushions

Vibration ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 77-90
Author(s):  
Sebastian Rieß ◽  
William Kaal ◽  
Kristian Herath

A frequency-adaptable tuned mass damper (FATMD) using metal cushions as tuneable stiffness components is presented. The dynamic properties of the cushions with respect to stiffness and damping are investigated experimentally in this context. The natural frequency of the experimental FATMD is found to be dependent on the precompression of the metal cushions, which behave like nonlinear springs, yielding an adjustable frequency range from 67 to 826 Hz. As the precompression is increased, the stiffness increases while the damping characteristics decrease, the effect of which was quantified using a viscous mass damper model as a first approximation. Measurements have been carried out under five different excitation amplitudes to investigate the amplitude dependency of the resonance frequency. The FATMD was largely unaffected by changes in input amplitude. It was concluded that metal cushions show great potential for use in FATMDs, surpassing the utility of elastomers, especially with respect to their temperature stability.

Author(s):  
Riccardo Ferraro ◽  
Alice Innocenti ◽  
Mirko Libraschi ◽  
Michele Barsanti ◽  
Enrico Ciulli ◽  
...  

Abstract Tilting pad journal bearings (TPJBs) are crucial elements in turbomachinery applications providing stiffness and damping characteristics that determine rotor system dynamic behavior. Hence, a correct design and an accurate dynamic properties prediction is fundamental for the successful industrial operation of rotating machinery. Current design trends in turbomachinery aiming at higher efficiency and power through weight optimization and higher operating speeds determine the development of large flexible rotors that are particularly important from the rotordynamic standpoint. The dynamic feasibility of this type of machine relies on bearing stiffness and damping characteristics that must be predicted with a certain level of confidence in order to increase the accuracy of the expected rotordynamic behaviour and avoid unpredicted vibration issues when rotors are operated. Furthermore, large centrifugal compressors commonly used in Liquified Natural Gas (LNG) applications make the bearings operate at very high peripheral speed where the transition from laminar to turbulent regime occurs, increasing the necessity of predictions accuracy. In this paper a test campaign on different large TPJB solutions operating in turbulent lubrication regime has been performed on a dedicated test rig designed for investigations on large size high-performance oil bearings. In the present work both static performance and dynamic identification of the tested TPJB solutions are presented and compared to numerical model predictions. The results of an uncertainty quantification, performed to validate the experimental results, are also shown.


2013 ◽  
Vol 56 ◽  
pp. 2149-2153 ◽  
Author(s):  
Hernán Garrido ◽  
Oscar Curadelli ◽  
Daniel Ambrosini

2021 ◽  
Vol 25 (2) ◽  
pp. 49-54
Author(s):  
Jae-Seung Hwang ◽  
◽  
Si-Yun Kim ◽  
Seung-Woo Lee

2017 ◽  
Vol 20 (8) ◽  
pp. 1232-1246 ◽  
Author(s):  
Ruotian Xu ◽  
Jun Chen ◽  
Xinqun Zhu

This article presents a hybrid approach for determining optimal parameters of multiple tuned mass dampers to reduce the floor vibration due to human walking. The proposed approach consists of two parts. The first one is a partial mode decomposition algorithm to efficiently calculate dynamic responses of the coupled floor–multiple tuned mass damper system subjected to moving walking loads. The second one is an adaptive genetic simulated annealing method for the optimization of multiple tuned mass damper parameters. To establish optimization, certain variables must be considered. These include the mass, natural frequency, and damping ratio of each tuned mass damper in a multiple tuned mass damper system. The objective is to minimize floor responses and remove unreasonable requirements, such as uniform mass distribution and symmetric distribution of the tuned mass damper frequency. The proposed hybrid approach has successfully been applied to optimize the multiple tuned mass damper system to reduce the vibration of a long-span floor with closely spaced modes. By the hybrid approach, an extensive parametric study has been carried out. The results show that different walking load models and uncertainties in the dynamic properties of the floor and each tuned mass damper itself can affect the overall performance of the multiple tuned mass damper system. The proposed hybrid optimization approach is very effective and the resulting multiple tuned mass damper system is robust in reducing floor vibrations under various conditions.


2018 ◽  
Vol 211 ◽  
pp. 14006
Author(s):  
Gino B. Colherinhas ◽  
Maura A. M. Shzu ◽  
Suzana M. Avila ◽  
Marcus V. G. de Morais

This paper models a tower with a passive Pendulum Tuned Mass Damper (PTMD) with Finite Elements (FE) using the resources and capabilities of commercial software ANSYS. Although structural control of high and slender towers using PTMDs are widely studied in literature, it was not found yet studies modelling the PTMD with ANSYS. This FE model is called by a routine coded in MATLAB to find the relation between the mass, length, stiffness, and damping coefficient of the pendulum in function of the high vibration amplitudes at the top of the tower (defined as a beam element type). This parametric study of the dynamic behaviour of the PTMD + FE beam structural model is analysed and its results are compared to a genetic optimization developed in other researches to find the best pendulum parameters.


1995 ◽  
Vol 19 (4) ◽  
pp. 383-396 ◽  
Author(s):  
P.J. Liu ◽  
S. Rakheja ◽  
A.K.W. Ahmed

The static and dynamic properties of a vehicle suspension comprising hydraulic struts interconnected in the roll plane are investigated. The fundamental properties of the interconnected suspension are investigated and compared to those of the unconnected suspensions with and without the anti-roll bar, in terms of load-carrying capacity, suspension rate, roll stiffness as well as damping characteristics. The anti-roll performance of the interconnected suspension is analyzed for excitations encountered during directional manoeuvres. The ride quality performance is evaluated for excitations occurring at tire-road interface. It is concluded that the interconnected hydro-pneumatic suspension with inherent enhanced roll stiffness and damping characteristics can significantly restrict the body roll motion to achieve improved roll stability of a vehicle.


2020 ◽  
Vol 22 (4) ◽  
pp. 983-990
Author(s):  
Konrad Mnich

AbstractIn this work we analyze the behavior of a nonlinear dynamical system using a probabilistic approach. We focus on the coexistence of solutions and we check how the changes in the parameters of excitation influence the dynamics of the system. For the demonstration we use the Duffing oscillator with the tuned mass absorber. We mention the numerous attractors present in such a system and describe how they were found with the method based on the basin stability concept.


Sign in / Sign up

Export Citation Format

Share Document