scholarly journals Comparative Analysis of High-Resolution Soil Moisture Simulations from the Soil, Vegetation, and Snow (SVS) Land Surface Model Using SAR Imagery Over Bare Soil

Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 542 ◽  
Author(s):  
Mohammed Dabboor ◽  
Leqiang Sun ◽  
Marco Carrera ◽  
Matthew Friesen ◽  
Amine Merzouki ◽  
...  

Soil moisture is a key variable in Earth systems, controlling the exchange of water andenergy between land and atmosphere. Thus, understanding its spatiotemporal distribution andvariability is important. Environment and Climate Change Canada (ECCC) has developed a newland surface parameterization, named the Soil, Vegetation, and Snow (SVS) scheme. The SVS landsurface scheme features sophisticated parameterizations of hydrological processes, including watertransport through the soil. It has been shown to provide more accurate simulations of the temporaland spatial distribution of soil moisture compared to the current operational land surface scheme.Simulation of high resolution soil moisture at the field scale remains a challenge. In this study, wesimulate soil moisture maps at a spatial resolution of 100 m using the SVS land surface scheme overan experimental site located in Manitoba, Canada. Hourly high resolution soil moisture maps wereproduced between May and November 2015. Simulated soil moisture values were compared withestimated soil moisture values using a hybrid retrieval algorithm developed at Agriculture andAgri-Food Canada (AAFC) for soil moisture estimation using RADARSAT-2 Synthetic ApertureRadar (SAR) imagery. Statistical analysis of the results showed an overall promising performanceof the SVS land surface scheme in simulating soil moisture values at high resolution scale.Investigation of the SVS output was conducted both independently of the soil texture, and as afunction of the soil texture. The SVS model tends to perform slightly better over coarser texturedsoils (sandy loam, fine sand) than finer textured soils (clays). Correlation values of the simulatedSVS soil moisture and the retrieved SAR soil moisture lie between 0.753–0.860 over sand and 0.676-0.865 over clay, with goodness of fit values between 0.567–0.739 and 0.457–0.748, respectively. TheRoot Mean Square Difference (RMSD) values range between 0.058–0.062 over sand and 0.055–0.113over clay, with a maximum absolute bias of 0.049 and 0.094 over sand and clay, respectively. Theunbiased RMSD values lie between 0.038–0.057 over sand and 0.039–0.064 over clay. Furthermore,results show an Index of Agreement (IA) between the simulated and the derived soil moisturealways higher than 0.90.

2004 ◽  
Vol 5 (6) ◽  
pp. 1131-1146 ◽  
Author(s):  
H. Richter ◽  
A. W. Western ◽  
F. H. S. Chiew

Abstract Numerical Weather Prediction (NWP) and climate models are sensitive to evapotranspiration at the land surface. This sensitivity requires the prediction of realistic surface moisture and heat fluxes by land surface models that provide the lower boundary condition for the atmospheric models. This paper compares simulations of a stand-alone version of the European Centre for Medium-Range Weather Forecasts (ECMWF) land surface scheme, or the Viterbo and Beljaars scheme (VB95), with various soil and vegetation parameter sets against soil moisture observations across the Murrumbidgee River catchment in southeast Australia. The study is, in part, motivated by the adoption of VB95 as the operational land surface scheme by the Australian Bureau of Meteorology in 1999. VB95 can model the temporal fluctuations in soil moisture, and therefore the moisture fluxes, fairly realistically. The monthly model latent heat flux is also fairly insensitive to soil or vegetation parameters. The VB95 soil moisture is sensitive to the soil and, to a lesser degree, the vegetation parameters. The model exhibits a significant (generally wet) bias in the absolute soil moisture that varies spatially. The use of the best Australia-wide available soils and vegetation information did not improve VB95 simulations consistently, compared with the original model parameters. Comparisons of model and observed soil moistures revealed that more realistic soil parameters are needed to reduce the model soil moisture bias. Given currently available continent-wide soils parameters, any initialization of soil moisture with observed values would likely result in significant flux errors. The soil moisture bias could be largely eliminated by using soil parameters that were derived directly from the actual soil moisture observations. Such parameters, however, are only available at very few point locations.


2011 ◽  
Vol 4 (4) ◽  
pp. 1115-1131 ◽  
Author(s):  
J. Mao ◽  
S. J. Phipps ◽  
A. J. Pitman ◽  
Y. P. Wang ◽  
G. Abramowitz ◽  
...  

Abstract. The CSIRO Mk3L climate system model, a reduced-resolution coupled general circulation model, has previously been described in this journal. The model is configured for millennium scale or multiple century scale simulations. This paper reports the impact of replacing the relatively simple land surface scheme that is the default parameterisation in Mk3L with a sophisticated land surface model that simulates the terrestrial energy, water and carbon balance in a physically and biologically consistent way. An evaluation of the new model's near-surface climatology highlights strengths and weaknesses, but overall the atmospheric variables, including the near-surface air temperature and precipitation, are simulated well. The impact of the more sophisticated land surface model on existing variables is relatively small, but generally positive. More significantly, the new land surface scheme allows an examination of surface carbon-related quantities including net primary productivity which adds significantly to the capacity of Mk3L. Overall, results demonstrate that this reduced-resolution climate model is a good foundation for exploring long time scale phenomena. The addition of the more sophisticated land surface model enables an exploration of important Earth System questions including land cover change and abrupt changes in terrestrial carbon storage.


2017 ◽  
Author(s):  
Peter J. Shellito ◽  
Eric E. Small

Abstract. Drydown periods that follow precipitation events provide an opportunity to assess the mechanisms by which soil moisture dissipates from the land surface. We use SMAP (Soil Moisture Active Passive) observations and Noah simulations from drydown periods to quantify the role of soil moisture, potential evaporation, vegetation cover, and soil texture on soil drying rates. Rates are determined using finite differences over intervals of 1 to 3 days. In the Noah model, the drying rates are a good approximation of direct soil evaporation rates. Data cover the domain of the North American Land Data Assimilation System phase 2 and span the first 1.8 years of SMAP's operation. Drying of surface soil moisture observed by SMAP is faster than that simulated by Noah. SMAP drying is fastest when surface soil moisture levels are high, potential evaporation is high, and when vegetation cover is low. Soil texture plays a minor role in SMAP drying rates. Noah simulations show similar responses to soil moisture and potential evaporation, but vegetation has a minimal effect and soil texture has a much larger effect compared to SMAP. When drying rates are normalized by potential evaporation, SMAP observations and Noah simulations both show that increases in vegetation cover lead to decreases in evaporative efficiency from the surface soil. However, the magnitude of this effect simulated by Noah is much weaker than that determined from SMAP observations.


2019 ◽  
Vol 20 (5) ◽  
pp. 793-819 ◽  
Author(s):  
Joseph A. Santanello Jr. ◽  
Patricia Lawston ◽  
Sujay Kumar ◽  
Eli Dennis

Abstract The role of soil moisture in NWP has gained more attention in recent years, as studies have demonstrated impacts of land surface states on ambient weather from diurnal to seasonal scales. However, soil moisture initialization approaches in coupled models remain quite diverse in terms of their complexity and observational roots, while assessment using bulk forecast statistics can be simplistic and misleading. In this study, a suite of soil moisture initialization approaches is used to generate short-term coupled forecasts over the U.S. Southern Great Plains using NASA’s Land Information System (LIS) and NASA Unified WRF (NU-WRF) modeling systems. This includes a wide range of currently used initialization approaches, including soil moisture derived from “off the shelf” products such as atmospheric models and land data assimilation systems, high-resolution land surface model spinups, and satellite-based soil moisture products from SMAP. Results indicate that the spread across initialization approaches can be quite large in terms of soil moisture conditions and spatial resolution, and that SMAP performs well in terms of heterogeneity and temporal dynamics when compared against high-resolution land surface model and in situ soil moisture estimates. Case studies are analyzed using the local land–atmosphere coupling (LoCo) framework that relies on integrated assessment of soil moisture, surface flux, boundary layer, and ambient weather, with results highlighting the critical role of inherent model background biases. In addition, simultaneous assessment of land versus atmospheric initial conditions in an integrated, process-level fashion can help address the question of whether improvements in traditional NWP verification statistics are achieved for the right reasons.


2020 ◽  
Author(s):  
Elizabeth Cooper ◽  
Ewan Pinnington ◽  
Richard Ellis ◽  
Eleanor Blyth ◽  
Simon Dadson ◽  
...  

<p>Soil moisture predictions are increasingly important in hydrological, ecological and agricultural applications. In recent years the availability of wide-area assessments of current and future soil-moisture states has grown, yet few studies have combined model-based assessments with observations beyond the point scale. Here we use the JULES land surface model together with COSMOS-UK data to evaluate the extent to which data assimilation can improve predictions of soil moisture across the United Kingdom.</p><p>COSMOS-UK is a network of soil moisture sensors run by UKCEH. The network provides soil moisture measurements at around 50 sites throughout the UK using innovative Cosmic Ray Neutron Sensors (CRNS). Half hourly measurements of the meteorological variables that the Joint UK Land Environment Simulator (JULES) requires as driving data are also recorded at COSMOS-UK sites, allowing us to run JULES at observation locations. This provides a unique opportunity to compare soil moisture outputs from JULES with CRNS observations; these measurements have a footprint of up to 12 ha (approx 30 acres) and are therefore better scale matched with JULES outputs than those from point sensors.</p><p>We have used the Land Variational Ensemble Data Assimilation Framework (LaVEnDAR) to combine soil moisture estimates from JULES with daily CRNS observations from one year at a number of COSMOS-UK sites. We show that this results in improved soil moisture predictions from JULES over several years. This has been achieved by optimising parameters in the pedo-transfer function used to derive JULES soil physics parameters from soil texture information. Using data assimilation with LaVEnDAR in this way allows us to explore the relationships between soil moisture estimates, soil physics parameters and soil texture, as well as improving the agreement between JULES model outputs and observations.</p>


2020 ◽  
Author(s):  
Sha Lu ◽  
Weidong Guo ◽  
Yongkang Xue ◽  
Fang Huang

<p>The Land surface scheme is crucial for the performance of regional climate models in dynamic downscaling application. In this study, we investigate the sensitivity of the simulation  with high resolution (10km) WRF model to the land surface schemes over Central Asia. The high resolution WRF simulations for 19 summers from 2000 to 2018 are conducted with four different land surface schemes (hereafter referred to as Exp-CLM, Exp-Noah-MP, Exp-PX and Exp-SSiB, respectively). The initial and boundary conditions for the WRF model simulations are provided from the NCEP-FNL analysis product. The ERA-Interim reanalysis (ERA), the GHCN-CAMS (CAMS) and the CRU gridded data are used to comprehensively evaluate the WRF simulations. Compared with verification data, the WRF model with high resolution can reasonably reproduce the spatial patterns of summer mean large scale atmospheric circulation, 2-m temperature and precipitation. The simulation results, however, are sensitive to the option of land surface scheme. The performance of Exp-CLM4 and Exp-SSiB are better than that of Exp-Noah-MP and Exp-PX assessed by the multivariable integrated evaluation method. To comprehensively understand the dynamic and physical mechanisms behind the WRF model sensitivity to land surface schemes, the differences in the surface energy balance between the ensemble means Ens-CLM4-SSiB and Ens-NoanMP-PX are analyzed in detail. The results demonstrate that the intensity of the simulated sensible heat flux over Central Asia is weaker in Ens-CLM4-SSiB than that in Ens-NoahMP-PX. As a result, large differences in geopotential height occur over the model simulation domain. The simulated wind fields are subsequently affected due to the geostrophic adjustment process, thus the simulation of 2-m temperature, precipitation, surface soil moisture and surface skin temperature are all affected.</p>


2017 ◽  
Vol 21 (6) ◽  
pp. 2953-2966 ◽  
Author(s):  
Patricia M. Lawston ◽  
Joseph A. Santanello Jr. ◽  
Trenton E. Franz ◽  
Matthew Rodell

Abstract. Irrigation increases soil moisture, which in turn controls water and energy fluxes from the land surface to the planetary boundary layer and determines plant stress and productivity. Therefore, developing a realistic representation of irrigation is critical to understanding land–atmosphere interactions in agricultural areas. Irrigation parameterizations are becoming more common in land surface models and are growing in sophistication, but there is difficulty in assessing the realism of these schemes, due to limited observations (e.g., soil moisture, evapotranspiration) and scant reporting of irrigation timing and quantity. This study uses the Noah land surface model run at high resolution within NASA's Land Information System to assess the physics of a sprinkler irrigation simulation scheme and model sensitivity to choice of irrigation intensity and greenness fraction datasets over a small, high-resolution domain in Nebraska. Differences between experiments are small at the interannual scale but become more apparent at seasonal and daily timescales. In addition, this study uses point and gridded soil moisture observations from fixed and roving cosmic-ray neutron probes and co-located human-practice data to evaluate the realism of irrigation amounts and soil moisture impacts simulated by the model. Results show that field-scale heterogeneity resulting from the individual actions of farmers is not captured by the model and the amount of irrigation applied by the model exceeds that applied at the two irrigated fields. However, the seasonal timing of irrigation and soil moisture contrasts between irrigated and non-irrigated areas are simulated well by the model. Overall, the results underscore the necessity of both high-quality meteorological forcing data and proper representation of irrigation for accurate simulation of water and energy states and fluxes over cropland.


Sign in / Sign up

Export Citation Format

Share Document