scholarly journals The Effect of Soil and Vegetation Parameters in the ECMWF Land Surface Scheme

2004 ◽  
Vol 5 (6) ◽  
pp. 1131-1146 ◽  
Author(s):  
H. Richter ◽  
A. W. Western ◽  
F. H. S. Chiew

Abstract Numerical Weather Prediction (NWP) and climate models are sensitive to evapotranspiration at the land surface. This sensitivity requires the prediction of realistic surface moisture and heat fluxes by land surface models that provide the lower boundary condition for the atmospheric models. This paper compares simulations of a stand-alone version of the European Centre for Medium-Range Weather Forecasts (ECMWF) land surface scheme, or the Viterbo and Beljaars scheme (VB95), with various soil and vegetation parameter sets against soil moisture observations across the Murrumbidgee River catchment in southeast Australia. The study is, in part, motivated by the adoption of VB95 as the operational land surface scheme by the Australian Bureau of Meteorology in 1999. VB95 can model the temporal fluctuations in soil moisture, and therefore the moisture fluxes, fairly realistically. The monthly model latent heat flux is also fairly insensitive to soil or vegetation parameters. The VB95 soil moisture is sensitive to the soil and, to a lesser degree, the vegetation parameters. The model exhibits a significant (generally wet) bias in the absolute soil moisture that varies spatially. The use of the best Australia-wide available soils and vegetation information did not improve VB95 simulations consistently, compared with the original model parameters. Comparisons of model and observed soil moistures revealed that more realistic soil parameters are needed to reduce the model soil moisture bias. Given currently available continent-wide soils parameters, any initialization of soil moisture with observed values would likely result in significant flux errors. The soil moisture bias could be largely eliminated by using soil parameters that were derived directly from the actual soil moisture observations. Such parameters, however, are only available at very few point locations.

Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 542 ◽  
Author(s):  
Mohammed Dabboor ◽  
Leqiang Sun ◽  
Marco Carrera ◽  
Matthew Friesen ◽  
Amine Merzouki ◽  
...  

Soil moisture is a key variable in Earth systems, controlling the exchange of water andenergy between land and atmosphere. Thus, understanding its spatiotemporal distribution andvariability is important. Environment and Climate Change Canada (ECCC) has developed a newland surface parameterization, named the Soil, Vegetation, and Snow (SVS) scheme. The SVS landsurface scheme features sophisticated parameterizations of hydrological processes, including watertransport through the soil. It has been shown to provide more accurate simulations of the temporaland spatial distribution of soil moisture compared to the current operational land surface scheme.Simulation of high resolution soil moisture at the field scale remains a challenge. In this study, wesimulate soil moisture maps at a spatial resolution of 100 m using the SVS land surface scheme overan experimental site located in Manitoba, Canada. Hourly high resolution soil moisture maps wereproduced between May and November 2015. Simulated soil moisture values were compared withestimated soil moisture values using a hybrid retrieval algorithm developed at Agriculture andAgri-Food Canada (AAFC) for soil moisture estimation using RADARSAT-2 Synthetic ApertureRadar (SAR) imagery. Statistical analysis of the results showed an overall promising performanceof the SVS land surface scheme in simulating soil moisture values at high resolution scale.Investigation of the SVS output was conducted both independently of the soil texture, and as afunction of the soil texture. The SVS model tends to perform slightly better over coarser texturedsoils (sandy loam, fine sand) than finer textured soils (clays). Correlation values of the simulatedSVS soil moisture and the retrieved SAR soil moisture lie between 0.753–0.860 over sand and 0.676-0.865 over clay, with goodness of fit values between 0.567–0.739 and 0.457–0.748, respectively. TheRoot Mean Square Difference (RMSD) values range between 0.058–0.062 over sand and 0.055–0.113over clay, with a maximum absolute bias of 0.049 and 0.094 over sand and clay, respectively. Theunbiased RMSD values lie between 0.038–0.057 over sand and 0.039–0.064 over clay. Furthermore,results show an Index of Agreement (IA) between the simulated and the derived soil moisturealways higher than 0.90.


2011 ◽  
Vol 5 (3) ◽  
pp. 773-790 ◽  
Author(s):  
R. Dankers ◽  
E. J. Burke ◽  
J. Price

Abstract. Land surface models (LSMs) need to be able to simulate realistically the dynamics of permafrost and frozen ground. In this paper we evaluate the performance of the LSM JULES (Joint UK Land Environment Simulator), the stand-alone version of the land surface scheme used in Hadley Centre climate models, in simulating the large-scale distribution of surface permafrost. In particular we look at how well the model is able to simulate the seasonal thaw depth or active layer thickness (ALT). We performed a number of experiments driven by observation-based climate datasets. Visually there is a very good agreement between areas with permafrost in JULES and known permafrost distribution in the Northern Hemisphere, and the model captures 97% of the area where the spatial coverage of the permafrost is at least 50%. However, the model overestimates the total extent as it also simulates permafrost where it occurs sporadically or only in isolated patches. Consistent with this we find a cold bias in the simulated soil temperatures, especially in winter. However, when compared with observations on end-of-season thaw depth from around the Arctic, the ALT in JULES is generally too deep. Additional runs at three sites in Alaska demonstrate how uncertainties in the precipitation input affect the simulation of soil temperatures by affecting the thickness of the snowpack and therefore the thermal insulation in winter. In addition, changes in soil moisture content influence the thermodynamics of soil layers close to freezing. We also present results from three experiments in which the standard model setup was modified to improve physical realism of the simulations in permafrost regions. Extending the soil column to a depth of 60 m and adjusting the soil parameters for organic content had relatively little effect on the simulation of permafrost and ALT. A higher vertical resolution improves the simulation of ALT, although a considerable bias still remains. Future model development in JULES should focus on a dynamic coupling of soil organic carbon content and soil thermal and hydraulic properties, as well as allowing for sub-grid variability in soil types.


2017 ◽  
Author(s):  
Gonzalo Sapriza-Azuri ◽  
Pablo Gamazo ◽  
Saman Razavi ◽  
Howard S. Wheater

Abstract. Arctic and sub-arctic regions are amongst the most susceptible regions on Earth to global warming and climate change. Understanding and predicting the impact of climate change in these regions require a proper process representation of the interactions between climate, the carbon cycle, and hydrology in Earth system models. This study focuses on Land Surface Models (LSMs) that represent the lower boundary condition of General Circulation Models (GCMs) and Regional Climate Models (RCMs), which simulate climate change evolution at the global and regional scales, respectively. LSMs typically utilize a standard soil configuration with a depth of no more than 4 meters, whereas for cold, permafrost regions, field experiments show that attention to deep soil profiles is needed to understand and close the water and energy balances, which are tightly coupled through the phase change. To address this, we design and run a series of model experiments with a one-dimensional LSM, called CLASS (Canadian Land Surface Scheme), as embedded in the MESH (Modélisation Environmentale Communautaire – Surface and Hydrology) modelling system, to (1) characterize the effect of soil profile depth under different climate conditions and in the presence of parameter uncertainty, and (2) develop a methodology for temperature profile initialization in permafrost regions, where the system has an extended memory, by the use of paleo-records and bootstrapping. Our study area is in Norman Wells, Northwest Territories of Canada, where measurements of soil temperature profiles and historical reconstructed climate data are available. Our results demonstrate that the adequate depth of soil profile in an LSM varies for warmer and colder conditions and is sensitive to model parameters and the uncertainty around them. In general, however, we show that a minimum of 20 meters of soil profile is essential to adequately represent the temperature dynamics. Our results also indicate the significance of model initialization in permafrost regions and our proposed spin-up method requires running the LSM over more than 300 years of reconstructed climate time series.


2016 ◽  
Vol 184 ◽  
pp. 1-14 ◽  
Author(s):  
Najib Djamai ◽  
Ramata Magagi ◽  
Kalifa Goïta ◽  
Olivier Merlin ◽  
Yann Kerr ◽  
...  

2011 ◽  
Vol 5 (2) ◽  
pp. 1263-1309 ◽  
Author(s):  
R. Dankers ◽  
E. J. Burke ◽  
J. Price

Abstract. Land surface models (LSMs) need to be able to simulate realistically the dynamics of permafrost and frozen ground. In this paper we evaluate the performance of the LSM JULES (Joint UK Land Environment Simulator), the stand-alone version of the land surface scheme used in Hadley Centre climate models, in simulating the large-scale distribution of surface permafrost. In particular we look at how well the model is able to simulate the seasonal thaw depth or active layer thickness (ALT). We performed a number of experiments driven by observation-based climate datasets. Visually there is a very good agreement between areas with permafrost in JULES and known permafrost distribution in the Northern Hemisphere, and the model captures 97% of the area where the permafrost coverage is at least 50% of the grid cell. However, the model overestimates the total extent as it also simulates permafrost where it occurs sporadically or only in isolated patches. Consistent with this we find a cold bias in the simulated soil temperatures, especially in winter. However, when compared with observations on end-of-season thaw depth from around the Arctic, the ALT in JULES is generally too deep. Additional runs at three sites in Alaska demonstrate how uncertainties in the precipitation input affect the simulation of soil temperatures by affecting the thickness of the snowpack and therefore the thermal insulation in winter. In addition, changes in soil moisture content influence the thermodynamics of soil layers close to freezing. We also present results from three experiments in which the standard model setup was modified to improve physical realism of the simulations in permafrost regions. Extending the soil column to a depth of 60 m and adjusting the soil parameters for organic content had relatively little effect on the simulation of permafrost and ALT. A higher vertical resolution improves the simulation of ALT, although a considerable bias still remains. Future model development in JULES should focus on a dynamic coupling of soil organic carbon content and soil thermal and hydraulic properties, as well as allowing for sub-grid variability in soil types.


2020 ◽  
Author(s):  
Michiel Maertens ◽  
Gabriëlle J. M. De Lannoy ◽  
Sebastian Apers ◽  
Sujay V. Kumar ◽  
Sarith P. P. Mahanama

Abstract. Various regions in the world experience land cover and land use changes. One such a region is the Dry Chaco ecoregion in South America, characterized by deforestation and forest degradation since the 1980s. In this study, we simulated the water balance over the Dry Chaco and assessed the impact of land cover changes thereon, using three different state-of-the-art land surface models (LSMs) within the NASA Land Information System (LIS) with updated parameters. The default LIS parameters were revised with (i) improved soil parameters, (ii) satellite-based dynamic vegetation parameters instead of default climatological vegetation parameters, and (iii) yearly land cover information instead of static land cover. A relative comparison in terms of water budget components and ‘efficiency space’ for various baseline and revised experiments showed that large regional and long-term differences relate to different LSM structures, whereas smaller local differences resulted from updated soil, vegetation and land cover parameters. Furthermore, different LSM structures redistributed water differently in response to these parameter updates. A time series comparison of the simulations to independent satellite-based estimates of evapotranspiration and brightness temperature showed that no LSM setup significantly outperformed another for the entire region, and that not all LSM simulations improved with updated parameter values. However, the revised soil parameters generally reduced the simulated surface soil moisture bias relative to pixel-scale in situ observations, and the simulated Tb bias relative to regional Soil Moisture Ocean Salinity (SMOS) observations.


Sign in / Sign up

Export Citation Format

Share Document