scholarly journals Feasibility Investigation of Improving the Modified Green–Ampt Model for Treatment of Horizontal Infiltration in Soil

Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 645 ◽  
Author(s):  
Ding-feng Cao ◽  
Bin Shi ◽  
Hong-hu Zhu ◽  
Hilary Inyang ◽  
Guang-qing Wei ◽  
...  

Water infiltration in soil is a complex process that still requires appreciation of interactions among three phases (soil particles, water and air) to enable accurate estimation of water transport rates. To simulate this process, the Green–Ampt (GA) model and the Modified Green-Ampt (MGA) model introduced in the paper “A new method to estimate soil water infiltration based on a modified Green–Ampt model” have been widely used. The GA model is based on the hypothesis that the advance of the wetting front in soil under matric suction can be treated as a rectangular piston flow that is instantaneously transformed after passage of the infiltration front, and the MGA model does not contain the influence of pore size change. This cannot accurately reflect the soil moisture change process from unsaturation to saturation. Due to soil stratification and other inhomogeneity, predictions produced with these models often differ widely from observations. To quickly obtain the soil moisture distribution after passage of the wetting front for horizontal infiltration, an improved modified Green–Ampt (IMGA) model is presented, which estimates the soil moisture profile along a horizontal column in a piecewise manner with three functions. A logarithmic function is used to describe the gradual soil saturation process in the transmission zone, and two linear functions are used to represent the wetting zone. The algorithm of the IMGA model for estimating the water infiltration rate and cumulative infiltration is configured. To verify the effectiveness of IMGA model, a lab model test was performed, and a numerical model was built to solve the horizontal one-dimensional Richards equation using the finite–element method. The results show that the IMGA model is more accurate than the GA and MGA models. The horizontal soil moisture profiles obtained by the IMGA model are closer to the measured data than the numerical simulation results. The relative errors of the MGA and IMGA models decrease with an increase in infiltration time, whereas that of the GA model first decreases and then increases with infiltration time. The primary novelty of this study is nonlinear description of soil moisture content distribution, and derivation of unit transfer coefficient.

2019 ◽  
Vol 25 (3) ◽  
pp. 189-202 ◽  
Author(s):  
Ding-Feng Cao ◽  
Bin Shi ◽  
Hong-Hu Zhu ◽  
Chao-Sheng Tang ◽  
Zhan-Pu Song ◽  
...  

ABSTRACT The infiltration and distribution of water through unsaturated soil determine its mechanical and hydrological properties. However, there are few methods that can accurately capture the spatial distribution of moisture inside soil. This study aims to demonstrate the use of actively heated fiber optic (AHFO) and Brillouin optical time domain analysis (BOTDA) technologies for monitoring soil moisture distribution as well as strain distribution. In addition to a laboratory model test, finite element analyses were conducted to interpret the measurements. During the experiment, the fine particle migration was also measured to understand its influence on soil hydraulic conductivity. The results of the experiment indicate that (i) for a soil that has never experienced a watering-dewatering cycle, water infiltration can be accurately calculated using the Richards’ equation; (ii) migration of fine soil particles caused by the watering-dewatering cycle significantly increases the hydraulic conductivity; and (iii) two critical zones (drainage and erosion) play significant roles in determining the overall hydraulic conductivity of the entire soil. This study provides a new method for monitoring the changes in soil moisture, soil strain, and hydraulic conductivity. The observations suggest that the effect of fine particles migration should be considered while evaluating soil moisture distribution and water movement.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1174 ◽  
Author(s):  
Honglin Zhu ◽  
Tingxi Liu ◽  
Baolin Xue ◽  
Yinglan A. ◽  
Guoqiang Wang

Soil moisture distribution plays a significant role in soil erosion, evapotranspiration, and overland flow. Infiltration is a main component of the hydrological cycle, and simulations of soil moisture can improve infiltration process modeling. Different environmental factors affect soil moisture distribution in different soil layers. Soil moisture distribution is influenced mainly by soil properties (e.g., porosity) in the upper layer (10 cm), but by gravity-related factors (e.g., slope) in the deeper layer (50 cm). Richards’ equation is a widely used infiltration equation in hydrological models, but its homogeneous assumptions simplify the pattern of soil moisture distribution, leading to overestimates. Here, we present a modified Richards’ equation to predict soil moisture distribution in different layers along vertical infiltration. Two formulae considering different controlling factors were used to estimate soil moisture distribution at a given time and depth. Data for factors including slope, soil depth, porosity, and hydraulic conductivity were obtained from the literature and in situ measurements and used as prior information. Simulations were compared between the modified and the original Richards’ equations and with measurements taken at different times and depths. Comparisons with soil moisture data measured in situ indicated that the modified Richards’ equation still had limitations in terms of reproducing soil moisture in different slope positions and rainfall periods. However, compared with the original Richards’ equation, the modified equation estimated soil moisture with spatial diversity in the infiltration process more accurately. The equation may benefit from further solutions that consider various controlling factors in layers. Our results show that the proposed modified Richards’ equation provides a more effective approach to predict soil moisture in the vertical infiltration process.


2000 ◽  
Vol 4 (1) ◽  
pp. 65-78 ◽  
Author(s):  
H. Koivusalo ◽  
T. Karvonen ◽  
A. Lepistö

Abstract. Runoff generation in a forested catchment (0.18 km2) was simulated using a quasi-three-dimensional rainfall-runoff model. The model was formulated over a finite grid where water movement was assumed to be dominantly vertical in the unsaturated soil zone and horizontal in the saturated soil. The vertical soil moisture distribution at each grid cell was calculated using a conceptual approximation to the one-dimensional Richards equation. The approximation allowed the use of a simple soil surface boundary condition and an efficient solution to the water table elevation over the finite grid. The approximation was coupled with a two-dimensional ground water model to calculate lateral soil water movement between the grid cells and exfiltration over saturated areas, where runoff was produced by the saturation-excess mechanism. Runoff was an input to a channel network, which was modelled as a nonlinear reservoir. The proposed approximation for the vertical soil moisture distribution in unsaturated soil compared well to a numerical solution of the Richards equation during shallow water table conditions, but was less satisfactory during prolonged dry periods. The simulation of daily catchment outflow was successful with the exception of underprediction of extremely high peak flows. The calculated water table depth compared satisfactorily with the measurements. An overall comparison with the earlier results of tracer studies indicated that the modelled contribution of direct rainfall/snowmelt in streamflow was higher than the isotopically traced fraction of event-water in runoff. The seasonal variation in the modelled runoff-contributing areas was similar to that in the event-water-contributing areas from the tracer analysis.


2020 ◽  
Author(s):  
Ye Su ◽  
Wei shao ◽  
Lukáš Vlček ◽  
Jakub Langhammer

<p>In forested regions, transpiration as the main component of evaporation fluxes is important for evaporation partitioning. Physiological behaviors among various vegetation species are quite different. Thus, an accurate estimation of the transpiration rate from a certain tree species needs specific parameterization of stomatal response to multiple environmental conditions. In this study, we chose a 300-m<sup>2 </sup>beech forest plot located in Vydra basin, the Czech Republic, to investigate the transpiration of beech (Fagus sylvatica) from the middle of the vegetative period to the beginning of the deciduous period, covering 100 days. The study area experienced bark beetle infestation, and the trees are newly formed, and mixed forest stands (spruce and beech) have transformed into beech stands. From the differences in the rooting depth of each kind of tree, an impact on the long-term water regime is expected. Furthermore, trees can change soil moisture distribution or water storage in aquifers by transpiration. Therefore, the sap flow equipment was installed in six trees with varying ages among 32 beech trees in the plot, and the measurements were used to infer the stomatal conductance for the beech forest. The diurnal pattern of stomatal conductance and the response of stomatal conductance under the multiple environmental conditions were analyzed. The results showed that the stomatal conductance inferred from sap flow reached the highest at midday but, on some days, there was a significant drop at midday, which might be attributed to the limits of the hydraulic potential of leaves (trees). The response of stomatal conductance showed no pattern with solar radiation and soil moisture, but it did show a clear correlation with the vapor deficit, in particular when explaining the midday drop. The relation to temperature was rather scattered as the measured period was in the moderate climate. The findings highlighted that the parametrization of stress functions based on the typical deciduous forest does not perfectly represent the measured stomatal response of beech. Therefore, measurements of sap flow can assist in better understanding transpiration in newly formed beech stands after bark beetle outbreaks in Central Europe.</p><p><strong>Keywords: </strong>Transpiration; beech forest; stomatal conductance; sap flow measurement</p>


2000 ◽  
Vol 4 (1) ◽  
pp. 79-93 ◽  
Author(s):  
E. Sauquet ◽  
I. Krasovskaia ◽  
E. Leblois

Abstract. Runoff generation in a forested catchment (0.18 km2) was simulated using a quasi-three-dimensional rainfall-runoff model. The model was formulated over a finite grid where water movement was assumed to be dominantly vertical in the unsaturated soil zone and horizontal in the saturated soil. The vertical soil moisture distribution at each grid cell was calculated using a conceptual approximation to the one-dimensional Richards equation. The approximation allowed the use of a simple soil surface boundary condition and an efficient solution to the water table elevation over the finite grid. The approximation was coupled with a two-dimensional ground water model to calculate lateral soil water movement between the grid cells and exfiltration over saturated areas, where runoff was produced by the saturation-excess mechanism. Runoff was an input to a channel network, which was modelled as a nonlinear reservoir. The proposed approximation for the vertical soil moisture distribution in unsaturated soil compared well to a numerical solution of the Richards equation during shallow water table conditions, but was less satisfactory during prolonged dry periods. The simulation of daily catchment outflow was successful with the exception of underprediction of extremely high peak flows. The calculated water table depth compared satisfactorily with the measurements. An overall comparison with the earlier results of tracer studies indicated that the modelled contribution of direct rainfall/snowmelt in streamflow was higher than the isotopically traced fraction of event-water in runoff. The seasonal variation in the modelled runoff-contributing areas was similar to that in the event-water-contributing areas from the tracer analysis.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4431 ◽  
Author(s):  
Dingfeng Cao ◽  
Hongyuan Fang ◽  
Fuming Wang ◽  
Honghu Zhu ◽  
Mengya Sun

A fiber Bragg grating (FBG)-based aluminum oxide tube packed sensor (ATPS) was developed for the fast detection of the soil moisture profile in highway slopes and subgrades. The novel ATPS consists of an aluminum oxide tube with a diameter of 5 mm, an optical fiber containing a quasi-distributed FBG sensors, a “U”-shaped resistance wire, and a flange. There are four 0.9-mm diameter holes in the ATPS. Laboratory experiments were carried out to calibrate the relationship between the thermal response of ATPS and the soil moisture content. Two laboratory rainfall validation model tests were performed to validate the ATPS for capturing the soil moisture profile in highway slopes and subgrades. During the validations, the accuracy of the ATPS was quantified, and water infiltration through grassy and grassless ground surfaces were investigated. The calibrations indicate that the ATPS can detect and record real-time changes in the highway slope and subgrade moisture after rainfall, and reveal the most dangerous zones that occur at the connection between different construction materials. The average measurement accuracy of soil moisture monitoring was 0.015 m3/m3. Please note that the connection is where cracks form easily and the soil hydraulic conductivity increases significantly. The test results also indicate that grassy cover (lawn) significantly prevents water infiltration during the first few minutes of rainfall (twelve minutes in this study), after which, however, the infiltration rate drops sharply. The influence of lawn on water infiltration depends on the soil structure, hydraulic conductivity, and rainfall time. In summary, due to its small size and fast detection, the ATPS is a portable probe that can be used for moisture monitoring in highway slopes and subgrades.


2009 ◽  
Vol 10 (1) ◽  
pp. 308-319 ◽  
Author(s):  
Xubin Zeng ◽  
Mark Decker

Abstract The soil moisture–based Richards equation is widely used in land models for weather and climate studies, but its numerical solution using the mass-conservative scheme in the Community Land Model is found to be deficient when the water table is within the model domain. Furthermore, these deficiencies cannot be reduced by using a smaller grid spacing. The numerical errors are much smaller when the water table is below the model domain. These deficiencies were overlooked in the past, most likely because of the more dominant influence of the free drainage bottom boundary condition used by many land models. They are fixed here by explicitly subtracting the hydrostatic equilibrium soil moisture distribution from the Richards equation. This equilibrium distribution can be derived at each time step from a constant hydraulic (i.e., capillary plus gravitational) potential above the water table, representing a steady-state solution of the Richards equation. Furthermore, because the free drainage condition has serious deficiencies, a new bottom boundary condition based on the equilibrium soil moisture distribution at each time step is proposed that also provides an effective and direct coupling between groundwater and surface water.


2019 ◽  
Author(s):  
Yiben Cheng ◽  
Hongbin Zhan ◽  
Mingchang Shi

Abstract. Desertification is a global environmental and societal concern at present, and China is one of the countries that face the most severe damage of desertification. China’s so-called Three North shelterbelt Program (3NSP) has produced a vast area of lined forest in the semi-arid regions with the purpose of battling desertification. Such a wind-breaking and sand-fixing forest has successfully slowed down the incursion of desert. However, the vast artificial forestry consumes a large amount of water resources, which profoundly affect the fragile ecological environment in the semi-arid regions. In turn, a large amount of water loss also causes a great number of vegetation deaths or defects. To understand the water balance and sustainable development of artificial forest in semi-arid region, this study uses the 30-year-old lined Pinus sylvestris var. mongolica sand-fixing forest in the eastern part of Mu Us Sandy land in Northwestern China as an example. Specifically, this investigation studies the redistribution of water in soil under existing precipitation conditions, so as to evaluate whether the rain-feed forestry can develop sustainably or not. Rain gauge, newly designed lysimeter and soil moisture sensor are used to monitor precipitation, deep soil recharge (DSR) and soil water content, resulting in an accurate estimation of annual moisture distribution of the rain-feed Pinus sylvestris var. mongolica. The study shows that there are two obvious moisture recharge processes in an annual base for the Pinus sylvestris var. mongolica forest soil in Mu Us Sandy land: 1) the snow melted water infiltration-recharge process in the spring, and 2) the precipitation-recharge process in the summer. The recharge depth of the first process is 160 cm. The second process results in DSR (referring to recharge that can reach a depth more than 200 cm and may eventually replenish the groundwater reservoir). The DSR of 2016–2018 is 1.4 mm, 0.2 mm, 1.2 mm, respectively. To reach the recharge depths of 20 cm, 40 cm, 80 cm, 120 cm, 160 cm, and 200 cm, the corresponding precipitation intensities have to be 2.6 mm/d, 3.2 mm/d, 3.4 mm/d, 8.2 mm/d, 8.2 mm/d, and 13.2 mm/d, respectively. The annual evaporation amount in the Mu Us Sandyland Pinus sylvestris var. mongolica forest is 426.96 mm in 2016, 324.6 mm in 2017, 416.253 mm in 2018. This study concludes that under the current precipitation conditions, very small but observable DSR happened, thus the groundwater system underneath the forest may be replenished, meaning that the artificial Pinus forestry can probably develop sustainably. This study confirms that developing limited amount forestry in semi-arid regions is likely in a sustainable fashion. The widely variable annual precipitation in semi-arid areas may affect this conclusion and should be investigated in the future.


Author(s):  
Nguyen Van Hoang ◽  
Hoang Viet Hung ◽  
Pham Van Dung

Since the year of 2017 landslides at the red mud basins in Nhan Co alumina factory, Dak Nong province have been occurring during the rainy seasons. The change of the soil physical and mechanical parameters due to rainwater infiltration has been considered as the main factor of the slope instability. The soil cohesion and angle of internal friction depend very much on the soil moisture: soil with a lower moisture content has a higher shearing strength than that with higher moisture content. The finite element modeling of moisture transfer in unsaturated soils through the relationship between soil moisture, soil suction, unsaturated permeability and soil-moisture dispersivity is capable of accurately predicting the wetting front development. The element sizes and time steps have been selected based on detailed analysis of analytical error estimation and on the numerical simulations with different element sizes numerical simulation errors. Soil samples had been taken and the soil different suctions and corresponding soil moisture values have been determined in the laboratory. The soil water characteristic curve (SWCC) parameters (a, n and m) have been determined by the best fitting using the least squared error method. The hydraulic conductivity of the saturated soil, one of the key input parameters was also determined. The results of the application to the study area's slope has shown that the wetting front depth can be up to 8 meters for 90 days of moisture transfer due to the rainwater infiltration The wetting front depth and the length of the intermediate part of the moisture distribution curve have increased with the infiltration time. The soil moisture distribution with a depth is an essential information to have soil strength parameters for the slope stability analyses. The slope stability analysis with the soil shear strength parameters which are strictly corresponding with the moisture change would provide the most accurate and reliable slope stability results and provide more reliable slope stabilization solutions.


Sign in / Sign up

Export Citation Format

Share Document