scholarly journals Hydrological Modelling and Water Resources Assessment of Chongwe River Catchment using WEAP Model

Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 839 ◽  
Author(s):  
Tewodros M. Tena ◽  
Phenny Mwaanga ◽  
Alick Nguvulu

The Chongwe River Catchment (CRC) is located in Zambia. It receives a mean annual precipitation of 889 mm. The catchment is facing growing anthropogenic and socio-economic activities leading to severe water shortages in recent years, particularly from July to October. The objective of this study was to assess the available water resources by investigating the important hydrological components and estimating the catchment water balance using the Water Evaluation and Planning (WEAP) model. The average precipitation over a 52 year period and a 34 year period of streamflow measurement data for four stations were used in the hydrological balance model. The results revealed that the catchment received an estimated mean annual precipitation of 4603.12 Mm3. It also released an estimated mean annual runoff and evapotranspiration of 321.94 Mm3 and 4063.69 Mm3, respectively. The estimated mean annual total abstractions in the catchment was 119.87 Mm3. The average annual change in the catchment storage was 120.18 Mm3. The study also determined an external inflow of 22.55 Mm3 from the Kafue River catchment. The simulated mean monthly streamflow at the outlet of the CRC was 10.32 m3/s. The estimated minimum and maximum streamflow volume of the Chongwe River was about 1.01 Mm3 in September and 79.7 Mm3 in February, respectively. The performance of the WEAP model simulation was assessed statistically using the coefficient of determination (R2 = 0.97) and the Nash–Sutcliffe model efficiency coefficient (NSE = 0.64). The R2 and NSE values indicated a satisfactory model fit and result. Meeting the water demand of the growing population and associated socio-economic development activities in the CRC is possible but requires appropriate water resource management options.

2021 ◽  
Vol 39 (3A) ◽  
pp. 488-503
Author(s):  
Mustafa M. Al-Mukhtar ◽  
Ghasaq S. Mutar

Iraq is one of the Middle East countries that suffer from water scarcity. In addition to the water policy of the upstream riparian countries; rapid population increase, economic growth, and climate changes are the major stressors of water resources available for domestic and agricultural sectors in this country. Therefore, it is of importance to determine the optimal water management methodology. This study aims to identify the optimal water allocation among the domestic, agricultural, and industrial sectors of Baghdad city under present and potential future scenarios. As such, the WEAP model was used to assess and analyze the current and projected balance of water resource management. The model was firstly calibrated and validated using the monthly streamflow data at Sarai station on the Tigris River. Subsequently, the calibrated model was fed with different future scenarios over the period 2020-2040. The employed future scenarios included normal growth population rate (I), high growth population rate (II), halved river discharges (III), combined scenario of the high population with halved water flow (ΙV) and the simulated future water year type scenario (V). Results proved that the WEAP model satisfactorily modeled the water supply/demand in Baghdad with R2 and Pbias of 0.73 and 2.43%, respectively during the validation period. Also, it was found that the water demand and supply were unmet under all proposed future scenarios which implies that there is a swift need for sustainable water management in Iraq and in Baghdad.


Author(s):  
Klaudija Sapač ◽  
◽  
Simon Rusjan ◽  
Nejc Bezak ◽  
Mojca Šraj ◽  
...  

Understanding and prediction of low-flow conditions are fundamental for efficient water resources planning and management as well as for identification of water-related environmental problems. This is problematic especially in view of water use in economic sectors (e.g., tourism) where water-use peaks usually coincide with low-flow conditions in the summer time. In our study, we evaluated various low-flow characteristics at 11 water stations in the non-homogenous Ljubljanica river catchment in Slovenia. Approximately 90% of the catchment is covered by karst with a diverse subsurface, consisting of numerous karst caves. The streams in the remaining part of the catchment have mainly torrential characteristics. Based on daily discharge data we calculated and analyzed values of 5 low-flow indices. In addition, by analyzing hydrograph recession curves, recession constants were determined to assess the catchment’s responsiveness to the absence of precipitation. By using various calculation criteria, we analyzed the influence of individual criteria on the values of low-flow recession constants. Recession curves are widely used in different fields of hydrology, for example in hydrological models, baseflow studies, for low-flow forecasting, and in assessing groundwater storages which are crucial in view of assessing water availability for planning water resources management. Moreover, in the study we also investigated the possible impact of projected climate change (scenario RCP4.5) on low-flow conditions in two sub-catchments of the Ljubljanica river catchment. For the evaluation we used the lumped conceptual hydrological model implemented in the R package airGR. For periods 2011-2040, 2041-2070, and 2071-2100 low-flow conditions were evaluated based on flow duration curves compared with the 1981-2010 period. The lowest discharges at all water stations in the Ljubljanica river catchment occur mostly during the summer months. Our results for the future show that we can expect a decrease of the lowest low-flows in the first two 30-year periods, while in the last one low-flows could increase by approx. 15%. However, the uncertainty/variability of the results is very high and as such should be taken into account when interpreting and using the results. This study demonstrates that evaluation of several low-flow characteristics is needed for a comprehensive and holistic overview of low-flow dynamics. In non-homogeneous catchments with a high karstic influence, the hydrogeological conditions of rivers should also be taken into account in order to adequately interpret the results of low-flow analyses. This proved to be important even in case of neighboring water stations.


2015 ◽  
Vol 802 ◽  
pp. 581-586
Author(s):  
Salem S. Abu Amr ◽  
Yousef Salah Abu Mayla ◽  
Mohamed J.K. Bashir ◽  
Hamidi Abdul Aziz

The Gaza Strip suffers from complicated problems of water resources. Groundwater (GW) aquifer is the main source of water for drinking, industry, and agriculture purposes in this area. However, the quality of GW is unsuitable for drinking and other purposes. Wastewater is an environmental, social, and economic resource that needs to be managed appropriately. The treated effluent quality does not satisfy the guidelines for discharge and reuse options because of the overload of wastewater treatment plants. This study evaluated the public response toward water resource management and reuse. A study population with 300 hundred questionnaire interviews was prepared and collected. Only 7.3% of the interviewed people used municipal water for drinking, and the others used desalinated water and home filter units. Approximately 96% believed that water in the Gaza Strip is unsuitable for drinking. Meanwhile, 85% agreed for an additional increase in municipal water bill in exchange for good quality of water that is suitable for drinking and other purposes. The study also reported that 63% of the interviewed people disagreed to reuse the current treated wastewater for agriculture and 82.3% disagreed to consume agriculture products irrigated by the treated wastewater.


2016 ◽  
Vol 2 ◽  
pp. 31-40
Author(s):  
Agnieszka Cupak ◽  
◽  
Anna Górka ◽  
Bogusław Michalec ◽  
Andrzej Wałęga ◽  
...  

2016 ◽  
Vol 10 (4s) ◽  
pp. 621-629
Author(s):  
Valentina Pidlisnyuk ◽  
◽  
John Harrington JR ◽  
Yulia Melnyk ◽  
Yuliya Vystavna ◽  
...  

The article focuses on examining the influence of fluctuations in annual precipitation amount on the quality of surface waters. Water quality was estimated with data on BOD, COD and phosphate–ion concentration within five selected regions of Ukraine. Analysis of the precipitation data (1991 – 2010) showed different regional trends. Using the statistics, determination of the interconnection between precipitation amount and water resources quality were done. The obtained regularities and associated uncertainties can be used for prediction of changes in water resource quality and as a guide for future adaptation to possible climate change.


2019 ◽  
Vol 11 (22) ◽  
pp. 6463 ◽  
Author(s):  
Li ◽  
Yin ◽  
Zhang ◽  
Croke ◽  
Guo ◽  
...  

The Beijing-Tianjin-Hebei (Jingjinji) region is the most densely populated region in China and suffers from severe water resource shortage, with considerable water-related issues emerging under a changing context such as construction of water diversion projects (WDP), regional synergistic development, and climate change. To this end, this paper develops a framework to examine the water resource security for 200 counties in the Jingjinji region under these changes. Thus, county-level water resource security is assessed in terms of the long-term annual mean and selected typical years (i.e., dry, normal, and wet years), with and without the WDP, and under the current and projected future (i.e., regional synergistic development and climate change). The outcomes of such scenarios are assessed based on two water-crowding indicators, two use-to-availability indicators, and one composite indicator. Results indicate first that the water resources are distributed unevenly, relatively more abundant in the northeastern counties and extremely limited in the other counties. The water resources are very limited at the regional level, with the water availability per capita and per unit gross domestic product (GDP) being only 279/290 m3 and 46/18 m3 in the current and projected future scenarios, respectively, even when considering the WDP. Second, the population carrying capacity is currently the dominant influence, while economic development will be the controlling factor in the future for most middle and southern counties. This suggests that significant improvement in water-saving technologies, vigorous replacement of industries from high to low water consumption, as well as water from other supplies for large-scale applications are greatly needed. Third, the research identifies those counties most at risk to water scarcity and shows that most of them can be greatly relieved after supplementation by the planned WDP. Finally, more attention should be paid to the southern counties because their water resources are not only limited but also much more sensitive and vulnerable to climate change. This work should benefit water resource management and allocation decisions in the Jingjinji region, and the proposed assessment framework can be applied to other similar problems.


Sign in / Sign up

Export Citation Format

Share Document