scholarly journals Temporal Evolution of Seabed Scour Induced by Darrieus-Type Tidal Current Turbine

Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 896 ◽  
Author(s):  
Sun ◽  
Lam ◽  
Lam ◽  
Dai ◽  
Hamill

The temporal evolution of seabed scour was investigated to prevent damage around a monopile foundation for Darrieus-type tidal current turbine. Temporal scour depths and profiles at various turbine radius and tip clearances were studied by using the experimental measurements. Experiments were carried out in a purpose-built recirculating water flume associated with 3D printed turbines. The scour hole was developed rapidly in the initial process and grew gradually. The ultimate equilibrium of scour hole was reached after 180 min. The scour speed increased with the existence of a rotating turbine on top of the monopile. The findings suggested that monopile foundation and the rotating turbine are two significant considerations for the temporal evolution of scour. The scour depth is inversely correlated to the tip-bed clearance between the turbine and seabed. Empirical equations were proposed to predict the temporal scour depth around turbine. These equations were in good agreement with the experimental data.

2014 ◽  
Vol 679 ◽  
pp. 35-38 ◽  
Author(s):  
Azim Arshad ◽  
Shahrani Anuar ◽  
Ahmmad Shukrie ◽  
Rosdi Hussin

CFD simulation of a tidal current turbine shroud was performed using Ansys FLUENT commercial code and comparison was made with experimental data. The simulation result obtained was in good agreement with the experimental data. The coefficient of velocity, Cv was in the range of approximately 1.2 to 1.4 for both simulation and experiment. The present study gave useful information on the viability of CFD simulation for the initial evaluation of shroud design performance.


2019 ◽  
Vol 7 (10) ◽  
pp. 342 ◽  
Author(s):  
Sun ◽  
Lam ◽  
Dai ◽  
Hamill

Scour induced by a Darrieus-type tidal current turbine was investigated by using a joint numerical and experimental method with emphasis on the scour process of a full-scale turbine. This work proposes a new numerical method to estimate turbine scour developments, followed by model validation through experimental data in the initial stage. The small-scale numerical model was further extended to a full-scale model for the prediction of turbine scour. The numerical model consists of (1) k-ω turbulence closure, (2) a sediment transport model, and (3) a sediment slide model. The transient-state model was coupled with a morphologic model to calculate scour development. A dynamic mesh updating technique was implemented, enabling the autoupdate of data for the grid nodes of the seabed at each time step. Comparisons between the numerical results and the experimental measurements showed that the proposed model was able to capture the main features of the scour process. However, the numerical model underestimated about 15%–20% of the equilibrium scour depth than experimental data. An investigation of the temporal and spatial development of seabed scour around a full-scale Darrieus-type tidal current turbine is demonstrated. This work concludes that the proposed numerical model can effectively predict the scour process of tidal current turbines, and the rotating rotor has a significant impact on the equilibrium scour depth for full-scale turbines.


Author(s):  
Jun Leng ◽  
Ye Li

In recent years, tidal current energy has gained wide attention for its abundant resource and environmentally friendly production. This study focuses on analyzing dynamic behavior of a three-bladed vertical axis tidal current turbine. The multibody dynamics code MBDyn is used in the numerical simulation. It performs the integrated simulation and analysis of nonlinear mechanical, aeroelastic, hydraulic and control problems by numerical integration. In this study, tidal current turbine is idealized as an assembly of flexible beams including axis of rotation, arms and blades. We firstly conduct a modal analysis on the tidal current turbine and validate the model with the results obtained by ANSYS. The natural frequencies of blades with different size parameters are compared and the corresponding mode shapes are presented. Next, a parametric study was performed to investigate the effect of internal force on the dynamic response. It is concluded that the proposed method is accurate and efficient for structural analysis of tidal current turbine and this flexible multibody model can be used in the fluid-structure-interaction analysis in the future.


2015 ◽  
pp. 601-612
Author(s):  
B Morandi ◽  
F Di Felice ◽  
M Costanzo ◽  
G Romano ◽  
D Dhomé ◽  
...  

2018 ◽  
Vol 198 ◽  
pp. 04004
Author(s):  
P. T. Ghazvinei ◽  
H.H. Darvishi ◽  
A. Bhatia

Marine current power is a significant energy resource which is yet to be exploited for efficient energy production. Malaysia, being a tropical country is rich in renewable sources and tidal power is one of them. In Malaysia, Straits of Malacca is a potential site to establish a tidal current turbine. In the current study, the potential sites of the Straits of Malacca are discussed. A detailed review about the generator suitable for the Straits of Malacca with the associated challenges has also been discussed. Furthermore, the suitable solution for such challenges is proposed. The role of simulation in choosing an appropriate site and generator has also been reviewed. The focus of the study is to propose a generator suitable for the flow characteristics of the Straits of Malacca.


2020 ◽  
Vol 264 ◽  
pp. 114621 ◽  
Author(s):  
Guizhong Deng ◽  
Zhaoru Zhang ◽  
Ye Li ◽  
Hailong Liu ◽  
Wentao Xu ◽  
...  

2020 ◽  
Vol 210 ◽  
pp. 107320 ◽  
Author(s):  
Wang Hua-Ming ◽  
Qu Xiao-Kun ◽  
Chen Lin ◽  
Tu Lu-Qiong ◽  
Wu Qiao-Rui

2020 ◽  
pp. 108396
Author(s):  
Bo Yang ◽  
Kexiang Wei ◽  
Wenxian Yang ◽  
Tieying Li ◽  
Bo Qin

Sign in / Sign up

Export Citation Format

Share Document